In organised masters’ sports such as track and field, the official record performances offer a well-documented, controlled database for describing maximal physical performance throughout the life span and comparing the age-related changes in athletic events imposing different demands on training and functional abilities. Accordingly, an increasing number of articles and book chapters have highlighted the value of athletics records in providing an insight into ageing and performance (for recent reviews see [2, 4, 12]). Taking the absolute best records in each age category provides a straightforward approach to the upper limits of human performance compared to studies calculating averages from different sources of statistics compiled for athletes or trying to obtain representative performance results for all athletes participating in given sports.
Sprint running
A good example of a track athletic event requiring strength and power is the 100-m sprint, where great many highly trained athletes regularly compete at a high international level. Adequate reference data for maximal running speed in untrained men and women across the life span are lacking, but the superior performance of trained sprinters is obvious. The current world records in the 100-m sprint (Fig. 1) [13] indicate that there is a modest curvilinear decline in running speed until approximately 80 years of age in men (about 0.6% per year) and 75 years of age in women (0.7% per year), whereupon the exponential decline, which is typical for most physical performances, becomes more evident.
Critical factors behind the fact that even elite sprinters show a distinct decline in maximal running speed seem to be decreased stride length, reduced ability to produce efficient ground reaction forces and decreased lower extremity stiffness to tolerate the higher impact forces involved in the fast transition from the braking to push-off phases [11, 14, 15]. This may, in part, be associated with the reduced volume and intensity of strength training and consequent loss of muscle mass in the older age groups [4]. When elderly sprinters participated in a periodised strength training program, in which heavy-resistance exercises were combined with explosive types of weight training and plyometric exercises, their explosive force production, power characteristics and the cross-sectional area of type IIa fibres significantly improved [16].
However, it is obvious that the older champions represent a cohort that has never performed as well as their present-day young counterparts [10]. In fact, longitudinal data such as the individual-best 100-m performance times of JM, the Finnish men’s record holder in the age categories of 55–59, 60–64 and 65–69 years and world champion in 2007 and 2009, show a much smaller decrement in running speed over the years (0.3% per year until age 68) compared to the decline estimated from the world records. As more elite competitors continue to train and participate in the masters’ athletics in the older age groups, it is likely that the current records, even in this highly competed event, will further improve.
The improvement in record performances in the older age groups over the last 25 years can be seen in a Finnish database for the best times in the 400-m track race [17]. While it has been difficult for younger adults to better the previous records, the increased number of active master competitors has clearly improved the best times in the oldest men and women [4].
Compared to the 100-m sprint, the age-related decline in running speed estimated from the world records [13] remains somewhat greater (0.8% per year until age 80 in men and 1.0% per year until age 75 in women) in this type of race where, in addition to strength and power, the capacity for anaerobic glycolytic metabolism becomes increasingly important [12, 18]. However, trained athletes continue to maintain superior levels of performance throughout their lives. The world’s best 70-year-old male sprinter has run 400 m in 59 s and the world’s best 80-year-old sprinter the same distance in 70 s, while about 20% of average men at 65–74 and 40% at 75–84 report that they cannot even walk 500 m without difficulty [19].
Jumping
Athletic events such as the high jump provide somewhat different curves (Fig. 2). Although the world records [13] are again excellent in comparison with what can be presumed to be the performance levels in the general population, the decline in performance is steeper already in middle age (0.9% per year) and more linear throughout the age range than that shown for running speed in the previous examples. This may, in part, be due to the more complex mixture of strength, power, flexibility and technical skill needed in the high jump than in events such as sprint running. Differences in competitive status, training volume and intensity, and the use of different jumping technique by the younger compared to older athletes are also likely to play a role [4]. In the absence of any major changes in training or untoward injuries, longitudinal data should thus indicate a smaller age-related decline. This is supported by the results of athlete HS in the figure, who has retained a similar jumping technique and training volume when competing in the high jump. In the case of moderate training status and level of performance in adulthood, the plasticity of individual development makes it possible, at least for some time, to postpone the age-related decline or even to improve performance (cf. Conzelmann [20] and Fig. 4).
Long-distance running
Long-distance running such as the marathon, which is an extreme sport on account of its high demands on aerobic power and muscle endurance, also shows excellent levels of performance in older athletes competing continuously in that event (Fig. 3) [13, 21]. The open age world record for men has been achieved at age 35, and official results have been recorded until the 10th decade in both men and women. As with shorter running distances, the record performances do not dramatically decrease until 75 years of age (less than 1% per year in both men and women in terms of running speed). For comparison, the best 75-year-old marathon runner would be able to cover a distance of above 2.7 km in 15 continuous Cooper tests (12-min run), while the average test results for young male populations remain below 2.5 km [22].
Among the physiological determinants of endurance exercise performance, a progressive reduction in maximal oxygen uptake, with contributing factors such as decreased maximal stroke volume, heart rate and arterio-venous O2 difference, appears to be the primary mechanism associated with the decline in performance with age [3, 23]. Although the slope of the age-related decline in aerobic capacity in endurance-trained athletes resembles that in untrained persons [23, 24], this decline cannot be solely attributed to ageing as these athletes also reduce their training intensity and volume as they get older [3, 23]. On the other hand, the age-related decline in aerobic capacity in controls may be biased in that the subjects tested in the oldest age groups probably represent individuals with better health and fitness than the average sedentary population [4]. It is also noteworthy that, where the slopes of the decline are similar, the relative difference in aerobic capacity between endurance athletes and non-athletes is actually greater with ageing.