In order to assess the relationship between PA and gastric cancer, there are several questions which must be taken into account. Firstly, the subjects under study must be classified in a particular and specific category according to their PA level. Therefore, the three PA components (i.e. frequency, duration and intensity) must be examined within each category. Besides, it should be clearly specified the sort of PA which is being assessed, according to the domains where it is usually carried out. Finally, since PA practice varies in a lifetime, it is necessary to try to gather information about this habit at different age stages.
Classification according to PA level
Some epidemiological studies have failed to accurately identify the level of PA performed by the gastric cancer patients included in their samples. For instance, Leitzman et al. [32] followed during 8 years a cohort of 487,732 US men and women and found a strong inverse relationship between PA and risk for gastric (cardia and non-cardia) adenocarcinoma, but not for esophageal squamous cell. Increased PA was associated with a reduced risk for oesophageal adenocarcinoma. However, the measuring of PA was strictly related to the performance of continuous activities of certain intensity. Thus, lower intensity activities, such as walking, and physical efforts shorter than 20 min were omitted. In a similar line, Yuasa et al. [57] suggested some protective effect of PA on gastric carcinoma after interviewing 106 patients suffering from this malignancy. However, the activity level of the sample was obtained by simply separating those who never exercised from the ones who performed PA at least 1 h per week. Finally, some studies have not explained in depth how PA level was assessed and analysed. Therefore, no further discussion in this regard can be made.
Thus, Sundelöf et al. [46] observed that PA level did not affect the risk of mortality in oesophageal adenocarcinoma, oesophageal squamous cell carcinoma or gastric cardia carcinoma. Nevertheless, information about how the intensity or the frequency of the PA performed was measured was not shown. Similarly, Lagergren et al. [30] did not find any association between PA and the risk of oesophageal adenocarcinomas. Physical activity was measured and divided into quartiles according to 12 variables including the usual ones, but the emphasis of the paper was on body mass index as a risk factor, so little mention was made of PA methods or results.
In order to be able to relate and identify the level of PA, it is advisable to avoid dichotomous variables (sedentary yes/no; active/inactive) which limit the information and the assessment of the PA impact. In this regard, some authors have suggested the use of objective data, such as oxygen consumption and basal heart rate measurements [41]. Moreover, it is essential to have a unit of measure able to rate the individual physical performance and properly classify it, according to frequency, duration and intensity. In this regard, it seems useful to follow the five units proposed in the 2008 physical activity guidelines (inactive, low, medium, high or very high) [38] expressed in metabolic equivalents (MET)/hour/week [53].
In order to categorise the activities carried out according to MET, the Compendium of Physical Activity, which has recently been updated [1], is generally used as a reference framework [25, 26]. However, the values in the Compendium do not take into account specific variables such as age, sex or body mass among others. Given all that, it is advisable for further studies to adjust the obtained MET values by following the guidelines proposed by some authors [10, 28].
Other actions that must be carried out in order to accurately measure patients’ PA level are finding out the amount of time (in minutes) that they spend doing PA in a typical week (including, therefore, the weekend), as well as taking into account the weather influence on the sport habits. Therefore, it is interesting to distinguish at least between cold (fall–winter) and warm seasons (spring–summer) [42].
Finally, with the aim of identifying the intensity of the PA carried out by the patients, some studies have tried to gather information about the physiological response related to PA performance (appearance of sweat, shortness of breath, fatigue level, etc.) [25, 32]. However, since the capacity of effort is different in each person and given that the physiological organic response strongly depends on the fitness level of each individual, the aforementioned criteria can be misleading. Therefore, it seems more accurate to obtain data about the intensity of the performed PA by taking into account, whenever possible, objective variables related to it, such as speed, heart rate or amount of load. This methodological resource can help to improve the validity of the PA total score and the PA index that are used in some studies to calculate the PA level of each patient [25, 26, 50].
Selecting PA domains
Usually, PA domains are divided into four categories: occupational, household, transport and leisure time; the last with either a recreational or competitive aim. However, this methodological key point when measuring the amount of PA performed by gastric cancer patients is too often ignored. Thus, De Jonge et al. [15] interviewed 126 patients with either esophageal, cardia or squamous cell adenocarcinoma, but only collecting information about PA levels at work and during spare time. Besides, the authors did not report about the influence of this risk factor in any case. A similar approach was used in the Nova Scotia Barret Esophagus Study [3], where, after interviewing patients with oesophageal adenocarcinoma, leading an active lifestyle was identified as a key factor capable of reducing the potential of progression to invasive malignancy at an early stage. However, PA assessment was restricted to calculate the amount of hours per week spent on low, medium and high intensity leisure and work activities. In a similar line, Watabe et al. [51], who found no evidence of PA as a risk factor, only informed about the relationship between recreational activity and stomach cancer, whereas in other studies, some degree of association between the performance of PA and the risk of gastric cancer was observed, but again only the recreational type was measured [11, 43]. Finally, in the Whitehall study [4], a protective effect of travel activity on stomach cancer was found among men, but no other type of PA was measured.
Occupational factors have been regarded as playing an important role in the aetiology of several types of cancer. Thus, different studies have investigated the relationship between occupational PA and gastric cancer, and whereas some of them observed an increased risk of this malignancy in people who were presumed to be less physically active at work [9, 20, 45], others did not find any degree of association [18]. On the contrary, Wannamethee et al. [50], who reported that the risks of esophageal and gastric cancer were inverse related to PA, did not include PA at work in the total PA index score used to assess patients’ activity levels.
From the revised studies, it seems that the most accurate way of measuring the level of activity that an occupation involves is assigning a PA score to every job title. For instance, Vigen et al. [49], classified job activity into sedentary (e.g. secretary), moderate (e.g. sale worker) and high jobs (e.g. gardener) and obtained a total lifetime occupational physical activity index. However, using job titles as proxies for work-related PA might be prone to misclassification [11]. Besides, these kinds of investigations do not take into account PA patterns outside the workplace. Thus, any conclusion should be considered as indirect evidence. A possible solution to this matter could be the application of the regulation ISO 8996:1990 [27] to the reported occupational activity. This seems to be an interesting strategy, as it allows classifying the effort demand according to the energetic cost in METs/hour/week. Thus, just by knowing the profession of the patient and the total amount of time spent on it, it is possible to obtain a specific value of occupational PA level.
In closing, there are several methodological clues that should be taken into account when analysing PA domains. For instance, housework can be perfectly considered as work/occupational activity. The same happens with agricultural work, which is a need for some whereas an amusement for others. Thus, it seems important to design and devote a part of the PA questionnaire to the occupational aspect, and another to the performance of PA in general. This section should include all kinds of PA the patient can carry out during the off-hours. Given the difficulty that implies to remember and enumerate all the activities carried out during a typical week, the questions must be properly contextualised and show examples. In this regard, it is advisable to include sections referring to housework (including minor farm work and gardening), PA as a means of health or movement (walking, cycling, climbing up or down stairs) and recreational sport (distinguishing between individual and team sports) or competitive practice (monitoring training and aimed at high performance).
Measurement of PA over lifetime
When analysing the association between gastric cancer and activity level, variations in changes in PA over lifetime are not always taken into account, thereby potentially missing a true association between them. Even longitudinal studies have shown some methodological flaws in this regard, such as trying to measure the activity level of the patients by merely including common definitions of PA in global questionnaires about lifestyle factors [54, 56], instead of using specific longitudinal ones.
The measuring PA throughout lifetime relies on the self-report of PA, which is known to be subject to measuring error. This error becomes compounded when the measures are combined with an indicator of change of PA over time. Thus, since the questionnaire is the only realistic approach that can be used to measure lifetime PA in epidemiological studies, it should be properly tested, validated and designed. For instance, Inoue et al. [26] did use a quantitative approach for assessment using a common scale to estimate the effect PA on total cancer risk (including stomach cancer), by means of METS. Moreover, they assessed the validity of the proposed METs/day score among patients from their sample in two different seasons. However, the study focused on daily total PA level, and it is not clear if variation in changes in PA over lifetime was measured. In this line, Huerta et al. [25] conducted a prospective study in over half a million participants across ten European countries, in order to confirm the putative protection of PA on gastric cancer. Physical activity was measured by means of an overall index, which had been previously validated. Nevertheless, the transcultural validation might not be entirely appropriate. The authors combined time spent in sport and cycling, but it is not clear if this variable could be an accurate indicator of PA involvement. Indeed in some countries, cycling depends on several cultural and environmental factors and it is not as common as walking, which could be a more appropriate indicator. Besides, after revising the literature concerning the design and the previous administration of the questionnaire, it seems that patients were only asked about the performance of PA during the previous year. Again, it is not clear enough if changes on lifetime PA were controlled.
As it was previously noted, PA level is not kept constant in people across the lifespan. Overall, the volume of PA decreases over successive age groups, and there is an even greater age-related reduction in participation in vigorous sporting and fitness activities [47]. Thus, it is fundamental to know the PA level behaviour at least till the cancer onset. In this regard, one of the finest examples of how lifetime PA should be measured can be found in a Canadian nationwide case–control study, in which information on participants’ PA during mid-teens, early 30s, early 50s and the period about 2 years prior to interview/diagnosis was gathered [11]. Nevertheless, it is not clear if these age stages were organised according to established criteria or to the sample size and amount of information available, with the aim of getting as much statistical power as possible. In this regard, a clear pattern of PA performance has been observed among these four categories of age: <25, 25 to 39, 40 to 54 and ≥55 years [33]. On the other hand, historical questionnaires tend to examine PA separately at ages 12–18, 19–34, 35–49 and ≥50 years [38]. Nevertheless, PA energy expenditure is notoriously difficult to measure in free-living situations, and retrospective measurement poses an even greater challenge, given the difficulty in validating such measurements. In this regard, it has been proposed to divide the questionnaires into discrete time periods, starting with the most recent 15 years in three 5-year sections. Following this, questions regarding PA from the age of 20 years until the most recent 15 years should be asked in 10-year sections [5].