Ashe MC, Liu-Ambrose TY, Cooper DM, Khan KM, McKay HA (2008) Muscle power is related to tibial bone strength in older women. Osteoporos Int 19(12):1725–1732
Article
PubMed
CAS
Google Scholar
Aznar-Lain S, Webster AL, Canete S, San Juan AF, Lopez Mojares LM, Perez M, Lucia A, Chicharro JL (2007) Effects of inspiratory muscle training on exercise capacity and spontaneous physical activity in elderly subjects: a randomized controlled pilot trial. Int J Sports Med 28(12):1025–1029
Article
PubMed
CAS
Google Scholar
Baptista F, Santos DA, Silva AM, Mota J, Santos R, Vale S, Ferreira JP, Raimundo AM, Moreira H, Sardinha LB (2012) Prevalence of the Portuguese population attaining sufficient physical activity. Med Sci Sports Exerc 44(3):466–473
Article
PubMed
Google Scholar
Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310
Article
PubMed
CAS
Google Scholar
Brandon CA, Gill DP, Speechley M, Gilliland J, Jones GR (2009) Physical activity levels of older community-dwelling adults are influenced by summer weather variables. Appl Physiol Nutr Metab 34(2):182–190
Article
PubMed
Google Scholar
Buman MP, Hekler EB, Haskell WL, Pruitt L, Conway TL, Cain KL, Sallis JF, Saelens BE, Frank LD, King AC (2010) Objective light-intensity physical activity associations with rated health in older adults. Am J Epidemiol 172(10):1155–1165. doi:10.1093/aje/kwq249
Article
PubMed Central
PubMed
Google Scholar
Butland RJ, Pang J, Gross ER, Woodcock AA, Geddes DM (1982) Two-, six-, and 12-minute walking tests in respiratory disease. Br Med J 284(6329):1607–1608
Article
CAS
Google Scholar
Cain KL, Conway TL, Adams MA, Husak LE, Sallis JF (2013) Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. Int J Behav Nutr Phys Act 10:51. doi:10.1186/1479-5868-10-51
Article
PubMed Central
PubMed
Google Scholar
Camhi SM, Sisson SB, Johnson WD, Katzmarzyk PT, Tudor-Locke C (2011) Accelerometer-determined lifestyle activities in U.S. adults. J Phys Act Health 8(3):382–389
PubMed
Google Scholar
Cerin E, Barnett A, Sit CH, Cheung MC, Lee LC, Ho SY, Chan WM (2011) Measuring walking within and outside the neighborhood in Chinese elders: reliability and validity. BMC Publ Health 11:851. doi:10.1186/1471-2458-11-851
Article
Google Scholar
Chen KY, Bassett DR Jr (2005) The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc 37(11 Suppl):S490–s500
Article
PubMed
Google Scholar
Choi L, Ward SC, Schnelle JF, Buchowski MS (2012) Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc 44(10):2009–2016. doi:10.1249/MSS.0b013e318258cb36
Article
PubMed Central
PubMed
Google Scholar
Clark BK, Healy GN, Winkler EA, Gardiner PA, Sugiyama T, Dunstan DW, Matthews CE, Owen N (2011) Relationship of television time with accelerometer-derived sedentary time: NHANES. Med Sci Sports Exerc 43(5):822–828. doi:10.1249/MSS.0b013e3182019510
Article
PubMed
Google Scholar
Copeland JL, Esliger DW (2009) Accelerometer assessment of physical activity in active, healthy older adults. J Aging Phys Act 17(1):17–30
PubMed
Google Scholar
Davis M, Fox K (2007) Physical activity patterns assessed by accelerometry in older people. Eur J Appl Physiol 100(5):581–589
Article
PubMed
Google Scholar
Davis MG, Fox KR, Hillsdon M, Coulson JC, Sharp DJ, Stathi A, Thompson JL (2011) Getting out and about in older adults: the nature of daily trips and their association with objectively assessed physical activity. IJBNPA 8(116)
Davis MG, Fox KR, Hillsdon M, Sharp DJ, Coulson JC, Thompson JL (2011) Objectively measured physical activity in a diverse sample of older urban UK adults. Med Sci Sports Exerc 43(4):647–654. doi:10.1249/MSS.0b013e3181f36196
Article
PubMed
Google Scholar
R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://wwwR-projectorg
Esliger DW, Copeland JL, Barnes JD, Tremblay MS (2005) Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J Phys Act Health 2(3):366
Google Scholar
Evenson KR, Buchner DM, Morland KB (2012) Objective measurement of physical activity and sedentary behavior among US adults aged 60 years or older. Prev Chronic Dis 9:E26
PubMed Central
PubMed
Google Scholar
Fox KR, Hillsdon M, Sharp D, Cooper AR, Coulson JC, Davis M, Harris R, McKenna J, Narici M, Stathi A, Thompson JL (2011) Neighbourhood deprivation and physical activity in UK older adults. Health Place 17(2):633–640. doi:10.1016/j.healthplace.2011.01.002
Article
PubMed
CAS
Google Scholar
Fox K, Stathi A, McKenna J, Davis M (2007) Physical activity and mental well-being in older people participating in the Better Ageing Project. Eur J Appl Physiol 100(5):591–602
Article
PubMed
Google Scholar
Freedson PS, Melanson E, Sirard J (1998) Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc 30(5):777–781
Article
PubMed
CAS
Google Scholar
Gaba A, Kapus O, Pelclova J, Riegerova J (2012) The relationship between accelerometer-determined physical activity (PA) and body composition and bone mineral density (BMD) in postmenopausal women. Arch Gerontol Geriatr 54(3):e315–e321
Article
PubMed
Google Scholar
Gardiner PA, Clark BK, Healy GN, Eakin EG H, Owen N (2011) Measuring older adults’ sedentary time: reliability, validity, and responsiveness. Med Sci Sports Exerc 43(11):2127–2133. doi:10.1249/MSS.0b013e31821b94f7
Article
PubMed
Google Scholar
Gardiner PA, Eakin EG, Healy GN, Owen N (2011) Feasibility of reducing older adults’ sedentary time. Am J Prev Med 41(2):174–177. doi:10.1016/j.amepre.2011.03.020
Article
PubMed
Google Scholar
Gerdhem P, Dencker M, Ringsberg K, Åkesson K (2008) Accelerometer-measured daily physical activity among octogenerians: results and associations to other indices of physical performance and bone density. Eur J Appl Physiol 102(2):173–180
Article
PubMed
Google Scholar
Gonzales JU, Grinnell DM, Kalasky MJ, Proctor DN (2011) Sex-dependent associations between daily physical activity and leg exercise blood pressure responses. J Aging Phys Act 19(4):306–321
PubMed
Google Scholar
Grimm EK, Swartz AM, Hart T, Miller NE, Strath SJ (2012) Comparison of the IPAQ-short form and accelerometry predictions of physical activity in older adults. J Aging Phys Act 20(1):67–79
Google Scholar
Hagstromer M, Oja P, Sjostrom M (2007) Physical activity and inactivity in an adult population assessed by accelerometry. Med Sci Sports Exerc 39(9):1502–1508
Article
PubMed
Google Scholar
Hagströmer M, Troiano RP, Sjöström M, Berrigan D (2010) Levels and patterns of objectively assessed physical activity—a comparison between Sweden and the United States. Am J Epidemiol 171(10):1055–1064. doi:10.1093/aje/kwq069
Article
PubMed
Google Scholar
Ham SA, Ainsworth BE (2010) Disparities in data on Healthy People 2010 physical activity objectives collected by accelerometry and self-report. Am J Public Health 100(Suppl 1):S263–268
Article
PubMed Central
PubMed
Google Scholar
Hamer M, Venuraju SM, Lahiri A, Rossi A, Steptoe A (2012) Objectively assessed physical activity, sedentary time, and coronary artery calcification in healthy older adults. Arterioscler Thromb Vasc Biol 32(2):500–505
Article
PubMed
CAS
Google Scholar
Hansen BH, Kolle E, Dyrstad SM, Holme I, Anderssen SA (2012) Accelerometer-determined physical activity in adults and older people. Med Sci Sports Exerc 44(2):266–272. doi:10.1249/MSS.0b013e31822cb354
Article
PubMed
Google Scholar
Harris TJ, Owen CG, Victor CR, Adams R, Cook DG (2009) What factors are associated with physical activity in older people, assessed objectively by accelerometry? Br J Sports Med 43(6):442–450. doi:10.1136/bjsm.2008.048033
Article
PubMed
CAS
Google Scholar
Hart TL, Ainsworth BE, Tudor-Locke C (2011) Objective and subjective measures of sedentary behavior and physical activity. Med Sci Sports Exerc 43(3):449–456
Article
PubMed
CAS
Google Scholar
Hekler EB, Buman MP, Haskell WL, Conway TL, Cain KL, Sallis JF, Saelens BE, Frank LD, Kerr J, King AC (2012) Reliability and validity of CHAMPS self-reported sedentary-to-vigorous intensity physical activity in older adults. J Phys Act Health 9(2):225–236
PubMed
Google Scholar
Hurtig-Wennlof A, Hagstromer M, Olsson LA (2010) The International Physical Activity Questionnaire modified for the elderly: aspects of validity and feasibility. Publ Health Nutr 13(11):1847–1854. doi:10.1017/s1368980010000157
Google Scholar
Johannsen DL, Delany JP, Frisard MI, Welsch MA, Rowley CK, Fang X, Jazwinski SM, Ravussin E (2008) Physical activity in aging: comparison among young, aged, and nonagenarian individuals. J Appl Physiol 105(2):495–501
Article
PubMed Central
PubMed
Google Scholar
Jürimäe J, Kums T, Jürimäe T (2010) Plasma adiponectin concentration is associated with the average accelerometer daily steps counts in healthy elderly females. Eur J Appl Physiol 109(5):823–828
Article
PubMed
Google Scholar
Kang M, Rowe DA, Barreira TV, Robinson TS, Mahar MT (2009) Individual information-centered approach for handling physical activity missing data. Res Q Exerc Sport 80(2):131–137
Article
PubMed
Google Scholar
King WC, Jia L, Leishear K, Mitchell JE, Belle SH (2011) Determining activity monitor wear time: an influential decision rule. J Phys Act Health 8(4):566–580
PubMed Central
PubMed
Google Scholar
Kolbe-Alexander T, Lambert EV, Harkins JB, Ekelund U (2006) Comparison of two methods of measuring physical activity in South African older adults. J Aging Phys Act 14(1):98–114
PubMed
Google Scholar
Koster A, Caserotti P, Patel KV, Matthews CE, Berrigan D, van Domelen DR, Brychta RJ, Chen KY, Harris TB (2012) Association of sedentary time with mortality independent of moderate to vigorous physical activity. PLoS One 7(6)
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. doi:10.1136/bmj.b2700 bmj.b2700
Article
PubMed Central
PubMed
Google Scholar
Liu-Ambrose T, Nagamatsu LS, Graf P, Beattie BL, Ashe MC, Handy TC (2010) Resistance training and executive functions a 12-month randomized controlled trial. Arch Intern Med 170(2):170–178
Google Scholar
Malatesta D, Simar D, Dauvilliers Y, Candau R, Borrani F, Prefaut C, Caillaud C (2003) Energy cost of walking and gait instability in healthy 65- and 80-yr-olds. J Appl Physiol 95(6):2248–2256. doi:10.1152/japplphysiol.01106.2002
PubMed
Google Scholar
Marques EA, Mota J, Machado L, Sousa F, Coelho M, Moreira P, Carvalho J (2011) Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif Tissue Int 88(2):117–129. doi:10.1007/s00223-010-9437-1
Article
PubMed
CAS
Google Scholar
Marques EA, Wanderley F, Machado L, Sousa F, Viana JL, Moreira-Goncalves D, Moreira P, Mota J, Carvalho J (2011) Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Exp Gerontol 46(7):524–532. doi:10.1016/j.exger.2011.02.005
Article
PubMed
CAS
Google Scholar
Marquez DX, Hoyem R, Fogg L, Bustamante EE, Staffileno B, Wilbur J (2011) Physical activity of urban community-dwelling older Latino adults. J Phys Act Health 8:S161–S170
PubMed
Google Scholar
Martin PE, Rothstein DE, Larish DD (1992) Effects of age and physical activity status on the speed-aerobic demand relationship of walking. J Appl Physiol 73(1):200–206
PubMed
CAS
Google Scholar
Masse LC, Fuemmeler BF, Anderson CB, Matthews CE, Trost SG, Catellier DJ, Treuth M (2005) Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc 37(11 Suppl):S544–554
Article
PubMed
Google Scholar
Matthews CE (2005) Calibration of accelerometer output for adults. Med Sci Sports Exerc 37(11 Suppl):S512–s522
Article
Google Scholar
Matthews CE (2008) Physical activity in the United States measured by accelerometer: comment. Med Sci Sports Exerc 40(6):1188–1188
Article
PubMed
Google Scholar
McGibbon CA, Krebs DE (2001) Age-related changes in lower trunk coordination and energy transfer during gait. J Neurophysiol 85(5):1923–1931
PubMed
CAS
Google Scholar
Metzger JS, Catellier DJ, Evenson KR, Treuth MS, Rosamond WD, Siega-Riz AM (2008) Patterns of objectively measured physical activity in the United States. Med Sci Sports Exerc 40(4):630–638
Article
PubMed
Google Scholar
Miller NE, Strath SJ, Swartz AM, Cashin SE (2010) Estimating absolute and relative physical activity intensity across age via accelerometry in adults. J Aging Phys Activ 18(2):158–170
Google Scholar
Morse CI, Thom JM, Davis MG, Fox KR, Birch KM, Narici MV (2004) Reduced plantarflexor specific torque in the elderly is associated with a lower activation capacity. Eur J Appl Physiol 92(1–2):219–226
Article
PubMed
Google Scholar
Murphy SL (2009) Review of physical activity measurement using accelerometers in older adults: considerations for research design and conduct. Prev Med 48(2):108–114. doi:10.1016/j.ypmed.2008.12.001
Article
PubMed
Google Scholar
Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 116(9):1094–1105. doi:10.1161/CIRCULATIONAHA.107.185650
Article
PubMed
Google Scholar
Orsini N, Bellocco R, Bottai M, Hagstromer M, Sjostrom M, Pagano M, Wolk A (2008) Validity of self-reported total physical activity questionnaire among older women. Eur J Epidemiol 23(10):661–667
Article
PubMed
Google Scholar
Orsini N, Bellocco R, Bottai M, Hagströmer M, Sjöström M, Pagano M, Wolk A (2008) Profile of physical activity behaviors among Swedish women aged 56–75 years. Scand J Med Sci Sports 18(1):95–101
Article
PubMed
CAS
Google Scholar
Parker SJ, Strath SJ, Swartz AM (2008) Physical activity measurement in older adults: relationships with mental health. J Aging Phys Activ 16(4):369–380
Google Scholar
Pate RR, O’Neill JR, Lobelo F (2008) The evolving definition of "sedentary". Exerc Sport Sci Rev 36(4):173–178. doi:10.1097/JES
Article
PubMed
Google Scholar
Pelclová J, Gába A, Kapuš O (2011) Bone mineral density and accelerometer-determined habitual physical activity and inactivity in postmenopausal women. Acta Univ Palacki Olomuc Gymnica 41(3):47–53
Google Scholar
Peters TM, Moore SC, Xiang YB, Yang G, Shu XO, Ekelund U, Ji BT, Tan YT, Liu DK, Schatzkin A, Zheng W, Chow WH, Matthews CE, Leitzmann MF (2010) Accelerometer-measured physical activity in Chinese adults. Am J Prev Med 38(6):583–591
Article
PubMed Central
PubMed
Google Scholar
Pober DM, Staudenmayer J, Raphael C, Freedson PS (2006) Development of novel techniques to classify physical activity mode using accelerometers. Med Sci Sports Exerc 38(9):1626–1634. doi:10.1249/01.mss.0000227542.43669.45
Article
PubMed
Google Scholar
Pruitt LA, Glynn NW, King AC, Guralnik JM, Aiken EK, Miller G, Haskell WL (2008) Use of accelerometry to measure physical activity in older adults at risk for mobility disability. J Aging Phys Act 16(4):416–434
PubMed Central
PubMed
Google Scholar
Pulz C, Diniz RV, Alves AN, Tebexreni AS, Carvalho AC, de Paola AA, Almeida DR (2008) Incremental shuttle and six-minute walking tests in the assessment of functional capacity in chronic heart failure. Can J Cardiol 24(2):131–135
Article
PubMed Central
PubMed
Google Scholar
Reilly JJ, Penpraze V, Hislop J, Davies G, Grant S, Paton JY (2008) Objective measurement of physical activity and sedentary behaviour: review with new data. Arch Dis Child 93(7):614–619. doi:10.1136/adc.2007.133272
Article
PubMed
CAS
Google Scholar
Ried-Larsen M, Brond JC, Brage S, Hansen BH, Grydeland M, Andersen LB, Moller NC (2012) Mechanical and free living comparisons of four generations of the Actigraph activity monitor. Int J Behav Nutr Phys Act 9:113. doi:10.1186/1479-5868-9-113
Article
PubMed Central
PubMed
Google Scholar
Rikli RE (2000) Reliability, validity, and methodological issues in assessing physical activity in older adults. Res Q Exerc Sport 71(2 Suppl):S89–96
PubMed
CAS
Google Scholar
Rowe DA, Kemble CD, Robinson TS, Mahar MT (2007) Daily walking in older adults: day-to-day variability and criterion-referenced validity of total daily step counts. J Phys Act Health 4(4):434–446
PubMed
Google Scholar
Sallis JF, Saelens BE (2000) Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport 71(2 Suppl):S1–14
PubMed
CAS
Google Scholar
Santos DA, Silva AM, Baptista F, Santos R, Gobbo LA, Mota J, Sardinha LB (2012) Are cardiorespiratory fitness and moderate-to-vigorous physical activity independently associated to overweight, obesity, and abdominal obesity in elderly? Am J Hum Biol 24(1):28–34. doi:10.1002/ajhb.21231
Article
PubMed
Google Scholar
Sedentary Behaviour Research Network (2012) Letter to the editor: standardized use of the terms "sedentary" and "sedentary behaviours". Appl Physiol Nutr Metab 37(3):540–542. doi:10.1139/h2012-024
Article
PubMed
CAS
Google Scholar
Silva P, Aires L, Santos RM, Vale S, Welk G, Mota J (2011) Lifespan snapshot of physical activity assessed by accelerometry in Porto. J Phys Act Health 8(3):352–360
PubMed
Google Scholar
Stamatakis E, Davis M, Stathi A, Hamer M (2012) Associations between multiple indicators of objectively-measured and self-reported sedentary behaviour and cardiometabolic risk in older adults. Prev Med 54(1):82–87. doi:10.1016/j.ypmed.2011.10.009
Article
PubMed
Google Scholar
Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P (2009) An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 107(4):1300–1307. doi:10.1152/japplphysiol.00465.2009
Article
PubMed Central
PubMed
Google Scholar
Strath SJ, Greenwald MJ, Isaacs R, Hart TL, Lenz EK, Dondzila CJ, Swartz AM (2012) Measured and perceived environmental characteristics are related to accelerometer defined physical activity in older adults. Int J Behav Nutr Phys Act 9(40):40. doi:10.1186/1479-5868-9-40
Article
PubMed Central
PubMed
Google Scholar
Strath SJ, Holleman RG, Ronis DL, Swartz AM, Richardson CR (2008) Objective physical activity accumulation in bouts and nonbouts and relation to markers of obesity in US adults. Prev Chron Dis 5(4):A131
Google Scholar
Swartz AM, Tarima S, Miller NE, Hart TL, Grimm EK, Rote AE, Strath SJ (2012) Prediction of body fat in older adults by time spent in sedentary behavior. J Aging Phys Act 20(3):332–344
PubMed
Google Scholar
Taraldsen K, Chastin SF, Riphagen II, Vereijken B, Helbostad JL (2012) Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications. Maturitas 71(1):13–19. doi:10.1016/j.maturitas.2011.11.003
Article
PubMed
Google Scholar
Theou O, Jakobi JM, Vandervoort AA, Jones GR (2012) A comparison of physical activity (PA) assessment tools across levels of frailty. Arch Gerontol Geriatr 54(3):e307–314. doi:10.1016/j.archger.2011.12.005
Article
PubMed
Google Scholar
Thorp AA, Owen N, Neuhaus M, Dunstan DW (2011) Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am J Prev Med 41(2):207–215. doi:10.1016/j.amepre.2011.05.004
Article
PubMed
Google Scholar
Tremblay MS, Warburton DE, Janssen I, Paterson DH, Latimer AE, Rhodes RE, Kho ME, Hicks A, Leblanc AG, Zehr L, Murumets K, Duggan M (2011) New Canadian physical activity guidelines. Appl Physiol Nutr Metab 36(1):36–46. doi:10.1139/H11-009, 47–58
Article
PubMed
Google Scholar
Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M (2008) Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 40(1):181–188
Article
PubMed
Google Scholar
Trost SG, McIver KL, Pate RR (2005) Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc 37(11 Suppl):S531–543
Article
PubMed
Google Scholar
Tucker JM, Welk G, Nusser SM, Beyler NK, Dzewaltowski D (2011) Estimating minutes of physical activity from the previous day physical activity recall: validation of a prediction equation. J Phys Act Health 8(1):71–78
PubMed
Google Scholar
U.S. Department of Health and Human Services (2008) 2008 Physical activity guidelines for Americans; www.health.gov/paguidelines
Wanner M, Martin BW, Meier F, Probst-Hensch N, Kriemler S (2013) Effects of filter choice in GT3X accelerometer assessments of free-living activity. Med Sci Sports Exerc 45(1):170–177. doi:10.1249/MSS.0b013e31826c2cf1
Article
PubMed
Google Scholar
Washburn RA, Heath GW, Jackson AW (2000) Reliability and validity issues concerning large-scale surveillance of physical activity. Res Q Exerc Sport 71(2 Suppl):S104–113
PubMed
CAS
Google Scholar
Washburn RA, Smith KW, Jette AM, Janney CA (1993) The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 46(2):153–162
Article
PubMed
CAS
Google Scholar
Winkler EA, Gardiner PA, Clark BK, Matthews CE, Owen N, Healy GN (2011) Identifying sedentary time using automated estimates of accelerometer wear time. Br J Sports Med. doi:10.1136/bjsm.2010.079699
PubMed Central
PubMed
Google Scholar
Winkler EA, Gardiner PA, Clark BK, Matthews CE, Owen N, Healy GN (2012) Identifying sedentary time using automated estimates of accelerometer wear time. Brit J Sports Med 46(6):436–442
Article
Google Scholar
Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, Vishwanatha JK, Morabia A, Santella RM (2011) Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics: Off J DNA Methylation Soc 6(3):293–299
Article
CAS
Google Scholar