Zhao E, Tranovich MJ, Wright VJ. The role of mobility as a protective factor of cognitive functioning in aging adults: a review. Sports Health. 2014;6:63–9.
Article
PubMed Central
PubMed
Google Scholar
Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14:125–30.
Article
PubMed
Google Scholar
Etnier JL, Nowell PM, Landers DM, Sibley BA. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res Rev. 2006;52:119–30.
Article
PubMed
Google Scholar
Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85:1694–704.
Article
PubMed
Google Scholar
Hayes SM, Hayes JP, Cadden M, Verfaellie M. A review of cardiorespiratory fitness-related neuroplasticity in the aging brain. Front Aging Neurosci. 2013;5:31.
Article
PubMed Central
PubMed
Google Scholar
Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9:58–65.
Article
CAS
PubMed
Google Scholar
Kramer AF, Erickson KI. Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn Sci. 2007;11:342–8.
Article
PubMed
Google Scholar
Kramer AF, Erickson KI. Effects of physical activity on cognition, well-being, and brain: Human interventions. Alzheimers Dement. 2007;3:45–51.
Article
Google Scholar
Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Comprehensive Physiol. 2013;3:403–28.
Google Scholar
Netz Y, Wu MJ, Becker BJ, Tenenbaum G. Physical activity and psychological well-being in advanced age: a meta-analysis of intervention studies. Psychol Aging. 2005;20:272–84.
Article
PubMed
Google Scholar
Voelcker-Rehage C, Niemann C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev. 2013;37:2268–95.
Article
PubMed
Google Scholar
Abbott RD, White LR, Ross G, Masaki KH, Curb J, Petrovitch H. Walking and dementia in physically capable elderly men. JAMA. 2004;292:1447–53.
Article
CAS
PubMed
Google Scholar
Brown BM, Peiffer JJ, Martins RN. Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer’s disease? Mol Psychiatry. 2013;18:864–74.
Article
CAS
PubMed
Google Scholar
Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, Mc Auley E, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003;58:176–80.
Article
PubMed
Google Scholar
de Bruijn RF, Schrijvers EM, de Groot KA, Witteman JC, Hofman A, Franco OH, et al. The association between physical activity and dementia in an elderly population: the Rotterdam Study. Eur J Epidemiol. 2013;28:277–83.
Article
PubMed
Google Scholar
Rovio S, Kåreholt I, Helkala E-L, Viitanen M, Winblad B, Tuomilehto J, et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 2005;4:705–11.
Article
PubMed
Google Scholar
van Gelder BM, Tijhuis MA, Kalmijn S, Giampaoli S, Nissinen A, Kromhout D. Physical activity in relation to cognitive decline in elderly men: the FINE Study. Neurology. 2004;63:2316–21.
Article
PubMed
Google Scholar
Weuve J, Kang JH, Manson JE, Breteler MM, Ware JH, Grodstein F. Physical activity, including walking, and cognitive function in older women. JAMA. 2004;292:1454–61.
Article
CAS
PubMed
Google Scholar
Yaffe K, Barnes D, Nevitt M, Lui LY, Covinsky K. A prospective study of physical activity and cognitive decline in elderly women: women who walk. Arch Intern Med. 2001;161:1703–8.
Article
CAS
PubMed
Google Scholar
Guiney H, Machado L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon Bull Rev. 2013;20:73–86.
Article
PubMed
Google Scholar
Prakash RS, Voss MW, Erickson KI, Kramer AF. Physical activity and cognitive vitality. Annu Rev Psychol. 2015;66:769–97.
Article
PubMed
Google Scholar
Prakash RS, Voss MW, Erickson KI, Lewis JM, Chaddock L, Malkowski E, et al. Cardiorespiratory fitness and attentional control in the aging brain. Front Hum Neurosci. 2011;4:29.
Article
Google Scholar
Voelcker-Rehage C, Godde B, Staudinger UM. Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front Hum Neurosci. 2011;5:26.
Article
PubMed Central
PubMed
Google Scholar
Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72:239–52.
Article
PubMed Central
PubMed
Google Scholar
Kelly ME, Loughrey D, Lawlor BA, Robertson IH, Walsh C, Brennan S. The impact of exercise on the cognitive functioning of healthy older adults: asystematic review and meta-analysis. Ageing Res Rev. 2014;16:12–31.
Article
PubMed
Google Scholar
Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol Aging. 2014;35:20–8.
Article
Google Scholar
Lautenschlager NT, Almeida OP. Physical activity and cognition in old age. Curr Opin Psychiatry. 2006;19:190–93.
Article
PubMed
Google Scholar
Desjardins-Crépeau L, Berryman N, Vu TT, Villalpando JM, Kergoat MJ, Li KZ, et al. Physical functioning is associated with processing speed and executive functions in community-dwelling older adults. J Gerontol B Psychol Sci Soc Sci. 2014;69:837–44.
Article
PubMed
Google Scholar
Voelcker-Rehage C, Godde B, Staudinger UM. Physical and motor fit-ness are both related to cognition in old age. Eur J Neurosci. 2010;31:167–76.
Article
PubMed
Google Scholar
Wendell CR, Gunstad J, Waldstein SR, Wright JG, Ferrucci L, Zonderman AB. Cardiorespiratory fitness and accelerated cognitive decline with aging. J Gerontol A Biol Sci Med Sci. 2014;69:455–62.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chang M, Jonsson P, Snaedal J, Bjornsson S, Saczynski JS, Aspelund T, et al. The effect of midlife physical activity on cognitive function among older adults: AGES—Reykjavik Study. J Gerontol A Bio Sci Med Sci. 2010;65:1369–74.
Article
Google Scholar
Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia? A systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510.
Article
PubMed Central
PubMed
Google Scholar
Colcombe SJ, Kramer F, Erickson KI, Scalf P, McAuley E, Cohen NJ, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A. 2004;101:3316–21.
Article
PubMed Central
CAS
PubMed
Google Scholar
Forbes D, Thiessen EJ, Blake CM, Forbes SC, Forbes S. Exercise programs for people with dementia. Cochrane Database Syst Rev. 2013;12:Cd006489.
PubMed
Google Scholar
Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease:a systematic review of prospective evidence. Psychol Med. 2009;39:3–11.
Article
CAS
PubMed
Google Scholar
Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, et al. Ageing, fitness and neurocognitive function. Nature. 1999;400:418–9.
Article
CAS
PubMed
Google Scholar
Middleton LE, Barnes DE, Lui LY, Yaffe K. Physical activity over the life course and its association with cognitive performance and impairment in old age. J Am Geriatr Soc. 2010;58:1322–6.
Article
PubMed Central
PubMed
Google Scholar
Berchicci M, Lucci G, Di Russo F. Benefits of physical exercise on the aging brain: the role of the prefrontal cortex. J Gerontol A Biol Sci Med Sci. 2013;68:1337–41.
Article
PubMed Central
PubMed
Google Scholar
Taddei F, Bultrini A, Spinelli D, Di Russo F. Neural correlates of attentional and executive processing in middle-aged fencers. Med Sci Sports Exerc. 2012;44:1057–66.
Article
PubMed
Google Scholar
Di Russo F, Taddei F, Apnile T, Spinelli D. Neural correlates of fast stimulus discrimination and response selection in top-level fencers. Neurosci Lett. 2006;408:113–8.
Article
PubMed
Google Scholar
Hillman CH, Kramer AF, Belopolsky AV, Smith DP. A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. Int J Psychophysiol. 2006;59:30–9.
Article
PubMed
Google Scholar
Themanson JR, Hillman CH, Curtin JJ. Age and physical activity influences on action monitoring during task switching. Neurobiol Aging. 2006;27:1335–45.
Article
PubMed
Google Scholar
Dai CT, Chang YK, Huang CJ, Hung TM. Exercise mode and executive function in older adults: an ERP study of task–switching. Brain Cogn. 2013;83:153–62.
Article
PubMed
Google Scholar
Gajewski PD, Falkenstein M. Lifelong physical activity and executive functions in older age assessed by memory based task switching. Neuropsychologia. 2015;73:195–207.
Article
PubMed
Google Scholar
Gajewski PD, Falkenstein M. Long-term habitual physical activity is associated with lower distractibility in a Stroop interference task in aging: behavioral and ERP evidence. Brain Cogn. 2015;98:87–101.
Article
PubMed
Google Scholar
Getzmann S, Falkenstein M, Gajewski PD. Long-term cardiovascular fitness is associated with auditory attentional control in old adults: neuro-behavioral evidence. PLoS One. 2013;8:e74539.
Article
PubMed Central
CAS
PubMed
Google Scholar
Berryman N, Bherer L, Nadeau S, Lauzière S, Lehr L, Bobeuf F, et al. Multiple roads lead to Rome: combined high-intensity aerobic and strength training vs. gross motor activities leads to equivalent improvement in executive functions in a cohort of healthy older adults. Age. 2014;36:9710.
Article
PubMed Central
PubMed
Google Scholar
Forte R, Boreham CA, Leite JC, De Vito G, Brennan L, Gibney ER, et al. Enhancing cognitive functioning in the elderly: multicomponent vs resistance training. Clin Interv Aging. 2013;8:19–27.
Article
PubMed Central
PubMed
Google Scholar
Liu-Ambrose T, Nagamatsu LS, Graf P, Beattie BL, Ashe MC, Handy TC. Resistance training and executive functions: a 12-month randomized controlled trial. Arch Intern Med. 2010;170:170–8.
Article
PubMed Central
PubMed
Google Scholar
Predovan D, Fraser SA, Renaud M, Bherer L. The effect of three months of aerobic training on stroop performance in older adults. J Aging Res. 2012;2012:269815.
Article
PubMed Central
PubMed
Google Scholar
Albinet CT, Boucard G, Bouquet CA, Audiffren M. Increased heart rate variability and executive performance after aerobic training in the elderly. Eur J Appl Physiol. 2010;109:617–24.
Article
PubMed
Google Scholar
Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108:3017–22.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hindin SB, Zelinski EM. Extended practice and aerobicexercise interventions benefit untrained cognitive outcomes inolder adults: a meta-analysis. J Am Geriatr Soc. 2012;60:136–41.
Article
PubMed Central
PubMed
Google Scholar
Kirk-Sanchez NJ, McGough EL. Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging. 2014;9:51–62.
PubMed Central
PubMed
Google Scholar
Niemann C, Godde B, Staudinger UM, Voelcker-Rehage C. Exercise-induced changes in basal ganglia volume and cognition in older adults. Neuroscience. 2014;281:147–63.
Article
CAS
Google Scholar
Bamidis PD, Vivas AB, Styliadis C, Frantzidis C, Klados M, Schlee W, et al. A review of physical and cognitive interventions in aging. Neurosci Biobehav Rev. 2014;44:206–20.
Article
CAS
PubMed
Google Scholar
Chapman SB, Aslan S, Spence JS, Defina LF, Keebler MW, Didehbani N, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5:75.
Article
PubMed Central
PubMed
Google Scholar
Kleemeyer MM, Kühn S, Prindle J, Bodammer NC, Brechtel L, Garthe A, et al. Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults. Neuroimage. 2015. doi:10.1016/j.neuroimage.2015.11.026. [Epub ahead of print]
Gajewski PD, Wipking C, Falkenstein M, Gehlert T. Dortmunder Altersstudie: Studie zur Förderung der Hirnleistungsfähigkeit bei Älteren. Berlin: GDV, Unfallforschung der Versicherer, (Gesamtverband der Deutschen Versicherungswirtschaft 2010, Forschungsbericht; VV04); 2010.
Google Scholar
Gajewski PD, Falkenstein M. Training-induced improvement of response selection and error detection in aging assessed by task switching: effects of cognitive, physical and relaxation training. Front Human Neurosci. 2012;6:130.
Article
Google Scholar
Anderson-Hanley C, Arciero PJ, Brickman AM, Nimon JP, Okuma N, Westen SC, et al. Exergaming and older adult cognition: a cluster randomized clinical trial. Am J Prev Med. 2012;42:109–19.
Article
PubMed
Google Scholar
Chao YY, Scherer YK, Montgomery CA. Effects of using Nintendo Wii™ exergames in older adults: a review of the literature. J Aging Health. 2015;27:379–402.
Article
PubMed
Google Scholar
Kattenstroth JC, Kalisch T, Holt S, Tegenthoff M, Dinse HR. Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front Aging Neurosci. 2013;26:5.
Google Scholar
Rehfeld K, Hökelmann A, Kaufmann J, Müller N. Effects of a 6-month dance vs. fitness training on brain plasticity and balance performance in healthy seniors. Magdeburg: Presentation at the Active Healthy Aging Conference; 2015.
Google Scholar
Ballesteros S, Kraft E, Santana S, Tziraki C. Maintaining older brain functionality: a targeted review. Neurosci Biobehav Rev. 2015;55:453–77.
Article
PubMed
Google Scholar
Merom D, Cumming R, Mathieu E, Anstey KJ, Rissel C, Simpson JM, et al. Can social dancing prevent falls in older adults? A protocol of the Dance, Aging, Cognition, Economics (DAnCE) fall prevention randomised controlled trial. BMC Public Health. 2013;15:477.
Article
Google Scholar
Gajewski PD, Falkenstein M. Lifestyle and interventions for improving cognitive performance in older adults. In: Raab M, Lobinger B, Hoffmann S, Pizzera A, Laborde S, editors. Performance Psychology: Perception, Action, Cognition, and Emotion. Oxford: Elsevier; 2015. p. 189–203.
Google Scholar
Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37:2243–57.
Article
PubMed
Google Scholar
Maillot P, Perrot A, Hartley A. Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychol Aging. 2012;27:589–600.
Article
PubMed
Google Scholar
Mortimer JA, Ding D, Borenstein AR, DeCarli C, Guo Q, Wu Y, et al. Changes in brain volume and cognition in a randomized trial of exerciseand social interaction in a community-based sample of non-demented Chineseelders. J Alzheimers Dis. 2012;30:757–66.
PubMed Central
PubMed
Google Scholar
Eskes GA, Longman S, Brown AD, McMorris CA, Langdon KD, Hogan DB, et al. Contribution of physical fitness, cerebrovascular reserve andcognitive stimulation to cognitive function in post-menopausal women. Front Aging Neurosci. 2010;2:137.
Article
PubMed Central
PubMed
Google Scholar
Karp A, Paillard-Borg S, Wang H-X, Silverstein M, Winblad B, Fratiglioni L. Mental, physical and social components in leisure activities equally con-tribute to decrease dementia risk. Dement Geriatr Cogn Disord. 2006;21:65–73.
Article
PubMed
Google Scholar
Oswald WD, Gunzelmann T, Rupprecht R, Hagen B. Differentialeffects of single versus combined cognitive and physical training with olderadults: the SimA study in a 5-year perspective. Eur J Ageing. 2006;3:179–92.
Article
Google Scholar
Fabre C, Chamari K, Mucci P, Massé-Biron J, Préfaut C. Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med. 2002;23:415–21.
Article
CAS
PubMed
Google Scholar
Theill N, Schumacher V, Adelsberger R, Martin M, Jäncke L. Effects of simultaneously performed cognitive and physical training in older adults. BMC Neurosci. 2013;14:103.
Article
PubMed Central
PubMed
Google Scholar
Eggenberger P, Schumacher V, Angst M, Theill N, de Bruin ED. Does multicomponent physical exercise with simultaneous cognitive training boost cognitive performance in older adults? A 6-month randomized controlled trial with a 1-year follow-up. Clin Interv Aging. 2015;10:1335–49.
PubMed Central
PubMed
Google Scholar
Kraft E. Cognitive function, physical activity, and aging: possible biological links and implications for multimodal interventions. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2012;19:248–63.
Article
PubMed
Google Scholar