Ambrose AF, Paul G, Hausdorff JM. Risk factors for falls among older adults: a review of the literature. Maturitas. 2013;75(1):51–61. https://doi.org/10.1016/j.maturitas.2013.02.009.
Article
PubMed
Google Scholar
Patel M, Pavic A, Goodwin VA. Wearable inertial sensors to measure gait and posture characteristic differences in older adult fallers and non-fallers: a scoping review. Gait Posture. 2020;76:110–21. https://doi.org/10.1016/j.gaitpost.2019.10.039.
Article
PubMed
Google Scholar
Fernando E, Fraser M, Hendriksen J, Kim CH, Muir-Hunter SW. Risk factors associated with falls in older adults with dementia: a systematic review. Physiother Can. 2017;69(2):161–70. https://doi.org/10.3138/ptc.2016-14.
Article
PubMed
PubMed Central
Google Scholar
Joshi A, Rajabali F, Turcotte K, Beaton MD, Pike I. Fall-related deaths among older adults in British Columbia: cause and effect of policy change. Inj Prev. 2020;26:412–6. https://doi.org/10.1136/injuryprev-2019-043280.
Cox C, Vassallo M. Fear of falling assessments in older people with dementia. Rev Clin Gerontol. 2015;25(02):98–106. https://doi.org/10.1017/S0959259815000106.
Article
Google Scholar
Lamoth CJ, van Deudekom FJ, van Campen JP, Appels BA, de Vries OJ, Pijnappels M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J Neuroeng Rehabil. 2011;8:2.
Article
PubMed
PubMed Central
Google Scholar
Damián J, Pastor-Barriuso R, Valderrama-Gama E, de Pedro-Cuesta J. Factors associated with falls among older adults living in institutions. BMC Geriatr. 2013;13:6.
Article
PubMed
PubMed Central
Google Scholar
Mohler MJ, Wendel CS, Taylor-Piliae RE, Toosizadeh N, Najafi B. Motor performance and physical activity as predictors of prospective falls in community-dwelling older adults by frailty level: application of wearable technology. Gerontology. 2016;62(6):654–64. https://doi.org/10.1159/000445889.
Article
PubMed
Google Scholar
Huijben B, van Schooten KS, van Dieen JH, Pijnappels M. The effect of walking speed on quality of gait in older adults. Gait Posture. 2018;65:112–6. https://doi.org/10.1016/j.gaitpost.2018.07.004.
Article
CAS
PubMed
Google Scholar
Taylor ME, Delbaere K, Lord SR, Mikolaizak AS, Brodaty H, Close JCT. Neuropsychological, physical, and functional mobility measures associated with falls in cognitively impaired older adults. J Gerontol A Biol Sci Med Sci. 2014;69(8):987–95. https://doi.org/10.1093/gerona/glt166.
Article
PubMed
Google Scholar
Zhang W, Low L-F, Schwenk M, Mills N, Gwynn JD, Clemson L. Review of gait, cognition, and fall risks with implications for fall prevention in older adults with dementia. Dement Geriatr Cogn Disord. 2019;48(1–2):17–29. https://doi.org/10.1159/000504340.
Article
PubMed
Google Scholar
Chan WC, Yeung JWF, Wong CSM, Lam LCW, Chung KF, Luk JKH, et al. Efficacy of physical exercise in preventing falls in older adults with cognitive impairment: a systematic review and meta-analysis. J Am Med Dir Assoc. 2015;16(2):149–54. https://doi.org/10.1016/j.jamda.2014.08.007.
Article
PubMed
Google Scholar
Sherrington C, Fairhall NJ, Wallbank GK, Tiedemann A, Michaleff ZA, Howard K, et al. Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2019;1:CD012424.
PubMed
Google Scholar
Thibaud M, Bloch F, Tournoux-Facon C, Brèque C, Rigaud AS, Dugué B, et al. Impact of physical activity and sedentary behaviour on fall risks in older people: a systematic review and meta-analysis of observational studies. Eur Rev Aging Phys Act. 2012;9(1):5–15. https://doi.org/10.1007/s11556-011-0081-1.
Article
Google Scholar
Rapp K, Becker C, Cameron ID, König H-H, Büchele G. Epidemiology of falls in residential aged care: analysis of more than 70,000 falls from residents of bavarian nursing homes. J Am Med Dir Assoc. 2012;13(2):187.e1–6.
Article
Google Scholar
Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94. https://doi.org/10.1093/geronj/49.2.M85.
Article
CAS
PubMed
Google Scholar
Podsiadlo D, Richardson S. The timed "up & go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x.
Article
CAS
PubMed
Google Scholar
Trautwein S, Maurus P, Barisch-Fritz B, Hadzic A, Woll A. Recommended motor assessments based on psychometric properties in individuals with dementia: a systematic review. Eur Rev Aging Phys Act. 2019;16(1):20. https://doi.org/10.1186/s11556-019-0228-z.
Article
PubMed
PubMed Central
Google Scholar
Rivolta MW, Aktaruzzaman M, Rizzo G, Lafortuna CL, Ferrarin M, Bovi G, et al. Evaluation of the Tinetti score and fall risk assessment via accelerometry-based movement analysis. Artif Intell Med. 2019;95:38–47. https://doi.org/10.1016/j.artmed.2018.08.005.
Article
PubMed
Google Scholar
Montesinos L, Castaldo R, Pecchia L. Wearable inertial sensors for fall risk assessment and prediction in older adults: a systematic review and meta-analysis. IEEE Trans Neural Syst Rehabil Eng. 2018;26(3):573–82. https://doi.org/10.1109/TNSRE.2017.2771383.
Article
PubMed
Google Scholar
Bet P, Castro PC, Ponti MA. Fall detection and fall risk assessment in older person using wearable sensors: a systematic review. Int J Med Inform. 2019;130:103946. https://doi.org/10.1016/j.ijmedinf.2019.08.006.
Article
PubMed
Google Scholar
Kluge F, Gaßner H, Hannink J, Pasluosta C, Klucken J, Eskofier BM. Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters. Sensors (Basel). 2017;17(7):1522. https://doi.org/10.3390/s17071522.
Díaz S, Stephenson JB, Labrador MA. Use of wearable sensor Technology in Gait, balance, and range of motion analysis. Appl Sci. 2020;10(1):234.
Article
Google Scholar
Chaccour K, Darazi R, El Hassani AH, Andres E. From fall detection to fall prevention: a generic classification of fall-related systems. IEEE Sensors J. 2017;17(3):812–22. https://doi.org/10.1109/JSEN.2016.2628099.
Article
Google Scholar
Nooruddin S, Islam MM, Sharna FA, Alhetari H, Kabir MN. Sensor-based fall detection systems: a review. J Ambient Intell Humaniz Comput. 2021. https://doi.org/10.1007/s12652-021-03248-z.
Shu F, Shu J. An eight-camera fall detection system using human fall pattern recognition via machine learning by a low-cost android box. Sci Rep. 2021;11(1):2471. https://doi.org/10.1038/s41598-021-81115-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howcroft J, Kofman J, Lemaire ED. Review of fall risk assessment in geriatric populations using inertial sensors. J Neuroeng Rehabil. 2013;10(1):91. https://doi.org/10.1186/1743-0003-10-91.
Article
PubMed
PubMed Central
Google Scholar
Gillain S, Boutaayamou M, Beaudart C, Demonceau M, Bruyère O, Reginster JY, et al. Assessing gait parameters with accelerometer-based methods to identify older adults at risk of falls: a systematic review. Eur Geriatr Med. 2018;9(4):435–48. https://doi.org/10.1007/s41999-018-0061-3.
Article
PubMed
Google Scholar
Sun R, Sosnoff JJ. Novel sensing technology in fall risk assessment in older adults: a systematic review. BMC Geriatr. 2018;18(1):14. https://doi.org/10.1186/s12877-018-0706-6.
Article
PubMed
PubMed Central
Google Scholar
Dolatabadi E, van Ooteghem K, Taati B, Iaboni A. Quantitative mobility assessment for fall risk prediction in dementia: a systematic review. Dement Geriatr Cogn Disord. 2018;45(5–6):353–67. https://doi.org/10.1159/000490850.
Article
PubMed
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.
Article
PubMed
PubMed Central
Google Scholar
Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240(4857):1285–93. https://doi.org/10.1126/science.3287615.
Article
CAS
PubMed
Google Scholar
Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.; 2020. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp Assessed 2020 Sep 10.
Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, et al. Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis. PLoS One. 2016;11(1):e0147601. https://doi.org/10.1371/journal.pone.0147601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iluz T, Weiss A, Gazit E, Tankus A, Brozgol M, Dorfman M, et al. Can a body-fixed sensor reduce Heisenberg's uncertainty when it comes to the evaluation of mobility? Effects of aging and fall risk on transitions in daily living. J Gerontol A Biol Sci Med Sci. 2016;71(11):1459–65. https://doi.org/10.1093/gerona/glv049.
Article
PubMed
Google Scholar
Gietzelt M, Feldwieser F, Goevercin M, Steinhagen-Thiessen E, Marschollek M. A prospective field study for sensor-based identification of fall risk in older people with dementia. Inform Health Soc Care. 2014;39(3–4):249–61. https://doi.org/10.3109/17538157.2014.931851 .
Article
PubMed
Google Scholar
Folstein MF, Folstein SE, McHugh PR. Mini-mental state. J Psychiatr Res. 1975;12(3):189–98. https://doi.org/10.1016/0022-3956(75)90026-6.
Article
CAS
PubMed
Google Scholar
Borson S, Scanlan JM, Chen P, Ganguli M. The mini-cog as a screen for dementia: validation in a population-based sample. J Am Geriatr Soc. 2003;51(10):1451–4. https://doi.org/10.1046/j.1532-5415.2003.51465.x.
Article
PubMed
Google Scholar
Wade DT, Vergis E. The short orientation-memory-concentration test: a study of its reliability and validity. Clin Rehabil. 1999;13(2):164–70. https://doi.org/10.1191/026921599673848768.
Article
CAS
PubMed
Google Scholar
Bautmans I, Jansen B, van Keymolen B, Mets T. Reliability and clinical correlates of 3D-accelerometry based gait analysis outcomes according to age and fall-risk. Gait Posture. 2011;33(3):366–72. https://doi.org/10.1016/j.gaitpost.2010.12.003.
Article
PubMed
Google Scholar
Hua A, Quicksall Z, Di C, Motl R, LaCroix AZ, Schatz B, et al. Accelerometer-based predictive models of fall risk in older women: a pilot study. NPJ Digit Med. 2018;1(1):25. https://doi.org/10.1038/s41746-018-0033-5.
Article
PubMed
PubMed Central
Google Scholar
Zakaria NA, Kuwae Y, Tamura T, Minato K, Kanaya S. Quantitative analysis of fall risk using TUG test. Comput Methods Biomech Biomed Engin. 2015;18(4):426–37. https://doi.org/10.1080/10255842.2013.805211.
Article
PubMed
Google Scholar
Bizovska L, Svoboda Z, Janura M, Bisi MC, Vuillerme N. Local dynamic stability during gait for predicting falls in elderly people: a one-year prospective study. PLoS One. 2018;13(5):e0197091. https://doi.org/10.1371/journal.pone.0197091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ihlen EAF, van Schooten KS, Bruijn SM, van Dieen JH, Vereijken B, Helbostad JL, et al. Improved prediction of falls in community-dwelling older adults through phase-dependent entropy of daily-life walking. Front Aging Neurosci. 2018;10:44. https://doi.org/10.3389/fnagi.2018.00044.
Article
PubMed
PubMed Central
Google Scholar
Mancini M, Schlueter H, El-Gohary M, Mattek N, Duncan C, Kaye J, et al. Continuous monitoring of turning mobility and its association to falls and cognitive function: a pilot study. J Gerontol A Biol Sci Med Sci. 2016;71(8):1102–8. https://doi.org/10.1093/gerona/glw019.
Article
PubMed
PubMed Central
Google Scholar
Wang K, Delbaere K, Brodie MAD, Lovell NH, Kark L, Lord SR, et al. Differences between gait on stairs and flat surfaces in relation to fall risk and future falls. IEEE J Biomed Health Inform. 2017;21(6):1479–86. https://doi.org/10.1109/JBHI.2017.2677901.
Article
PubMed
Google Scholar
Brodie MAD, Menz HB, Smith ST, Delbaere K, Lord SR. Good lateral harmonic stability combined with adequate gait speed is required for low fall risk in older people. Gerontology. 2015;61(1):69–78. https://doi.org/10.1159/000362836.
Article
PubMed
Google Scholar
Buckinx F, Beaudart C, Slomian J, Maquet D, Demonceau M, Gillain S, et al. Added value of a triaxial accelerometer assessing gait parameters to predict falls and mortality among nursing home residents: a two-year prospective study. Technol Health Care. 2015;23(2):195–203. https://doi.org/10.3233/THC-140883.
Article
CAS
PubMed
Google Scholar
Ihlen EAF, Weiss A, Bourke A, Helbostad JL, Hausdorff JM. The complexity of daily life walking in older adult community-dwelling fallers and non-fallers. J Biomech. 2016;49(9):1420–8. https://doi.org/10.1016/j.jbiomech.2016.02.055.
Article
PubMed
Google Scholar
Qiu H, Rehman RZU, Yu X, Xiong S. Application of wearable inertial sensors and a new test battery for distinguishing retrospective fallers from non-fallers among community-dwelling older people. Sci Rep. 2018;8(1):16349. https://doi.org/10.1038/s41598-018-34671-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Senden R, Savelberg H, Grimm B, Heyligers IC, Meijer K. Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling. Gait Posture. 2012;36(2):296–300. https://doi.org/10.1016/j.gaitpost.2012.03.015.
Article
CAS
PubMed
Google Scholar
van Schooten KS, Pijnappels M, Rispens SM, Elders PJM, Lips P, van Dieen JH. Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults. J Gerontol A Biol Sci Med Sci. 2015;70(5):608–15. https://doi.org/10.1093/gerona/glu225.
Article
CAS
PubMed
Google Scholar
Weiss A, Herman T, Plotnik M, Brozgol M, Giladi N, Hausdorff JM. An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiol Meas. 2011;32(12):2003–18. https://doi.org/10.1088/0967-3334/32/12/009.
Article
CAS
PubMed
Google Scholar
Weiss A, Brozgol M, Dorfman M, Herman T, Shema S, Giladi N, et al. Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair. 2013;27(8):742–52. https://doi.org/10.1177/1545968313491004.
Article
PubMed
Google Scholar
Greene BR, Doheny EP, Walsh C, Cunningham C, Crosby L, Kenny RA. Evaluation of falls risk in community-dwelling older adults using body-worn sensors. Gerontology. 2012;58(5):472–80. https://doi.org/10.1159/000337259.
Article
PubMed
Google Scholar
Howcroft J, Lemaire ED, Kofman J. Wearable-sensor-based classification models of faller status in older adults. PLoS One. 2016;11(4):e0153240. https://doi.org/10.1371/journal.pone.0153240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howcroft J, Lemaire ED, Kofman J, WE MI. Dual-Task Elderly Gait of Prospective Fallers and Non-Fallers: A Wearable-Sensor Based Analysis. Sensors (Basel). 2018;18(4):1275. https://doi.org/10.3390/s18041275.
Sample RB, Kinney AL, Jackson K, Diestelkamp W, Bigelow KE. Identification of key outcome measures when using the instrumented timed up and go and/or posturography for fall screening. Gait Posture. 2017;57:168–71. https://doi.org/10.1016/j.gaitpost.2017.06.007.
Article
PubMed
Google Scholar
Brodie MA, Coppens MJ, Ejupi A, Gschwind YJ, Annegarn J, Schoene D, et al. Comparison between clinical gait and daily-life gait assessments of fall risk in older people. Geriatr Gerontol Int. 2017;17(11):2274–82. https://doi.org/10.1111/ggi.12979.
Article
PubMed
Google Scholar
Ejupi A, Brodie M, Lord SR, Annegarn J, Redmond SJ, Delbaere K. Wavelet-based sit-to-stand detection and assessment of fall risk in older people using a wearable pendant device. IEEE Trans Biomed Eng. 2017;64(7):1602–7. https://doi.org/10.1109/TBME.2016.2614230.
Article
PubMed
Google Scholar
Marschollek M, Nemitz G, Gietzelt M, Wolf KH, Meyer Zu Schwabedissen H, Haux R. Predicting in-patient falls in a geriatric clinic: a clinical study combining assessment data and simple sensory gait measurements. Z Gerontol Geriatr. 2009;42(4):317–21. https://doi.org/10.1007/s00391-009-0035-7.
Article
CAS
PubMed
Google Scholar
Marschollek M, Rehwald A, Wolf K-H, Gietzelt M, Nemitz G, zu Schwabedissen HM, et al. Sensors vs. experts - A performance comparison of sensor-based fall risk assessment vs. conventional assessment in a sample of geriatric patients. BMC Med Inform Decis Mak. 2011;11:48. https://doi.org/10.1186/1472-6947-11-48.
Pozaic T, Lindemann U, Grebe A-K, Stork W. Sit-to-stand transition reveals acute fall risk in activities of daily living. IEEE J Transl Eng Health Med. 2016;4:2700211.
Article
PubMed
Google Scholar
Buisseret F, Catinus L, Grenard R, Jojczyk L, Fievez D, Barvaux V, et al. Timed up and go and six-minute walking tests with wearable inertial sensor: one step further for the prediction of the risk of fall in elderly nursing home people. Sensors (Basel). 2020;20(11):3207. https://doi.org/10.3390/s20113207.
Article
Google Scholar
Rispens SM, van Schooten KS, Pijnappels M, Daffertshofer A, Beek PJ, van Dieën JH. Identification of fall risk predictors in daily life measurements: gait characteristics' reliability and association with self-reported fall history. Neurorehabil Neural Repair. 2015;29(1):54–61. https://doi.org/10.1177/1545968314532031.
Article
PubMed
Google Scholar
Giansanti D, Morelli S, Maccioni G, Costantini G. Toward the design of a wearable system for fall-risk detection in telerehabilitation. Telemed J E Health. 2009;15(3):296–9. https://doi.org/10.1089/tmj.2008.0106.
Article
PubMed
Google Scholar
Hassan L, Swarbrick C, Sanders C, Parker A, Machin M, Tully MP, et al. Tea, talk and technology: patient and public involvement to improve connected health 'wearables' research in dementia. Res Involv Engagem. 2017;3(1):12. https://doi.org/10.1186/s40900-017-0063-1.
Article
PubMed
PubMed Central
Google Scholar
Abel B, Pomiersky R, Werner C, Lacroix A, Schäufele M, Hauer K. Day-to-day variability of multiple sensor-based physical activity parameters in older persons with dementia. Arch Gerontol Geriatr. 2019;85:103911. https://doi.org/10.1016/j.archger.2019.103911.
Article
PubMed
Google Scholar
Fleiner T, Haussermann P, Mellone S, Zijlstra W. Sensor-based assessment of mobility-related behavior in dementia: feasibility and relevance in a hospital context. Int Psychogeriatr. 2016;28(10):1687–94. https://doi.org/10.1017/S1041610216001034.
Article
PubMed
Google Scholar
Schwenk M, Hauer K, Zieschang T, Englert S, Mohler J, Najafi B. Sensor-derived physical activity parameters can predict future falls in people with dementia. Gerontology. 2014;60(6):483–92. https://doi.org/10.1159/000363136.
Article
PubMed
Google Scholar
Fernandez-Duque D, Black SE. Selective attention in early dementia of Alzheimer type. Brain Cogn. 2008;66(3):221–31. https://doi.org/10.1016/j.bandc.2007.08.003.
Article
PubMed
Google Scholar
Hartman YAW, Karssemeijer EGA, van Diepen LAM, Olde Rikkert MGM, Thijssen DHJ. Dementia patients are more sedentary and less physically active than age- and sex-matched cognitively healthy older adults. Dement Geriatr Cogn Disord. 2018;46(1–2):81–9. https://doi.org/10.1159/000491995.
Article
PubMed
Google Scholar
Shany T, Redmond SJ, Marschollek M, Lovell NH. Assessing fall risk using wearable sensors: a practical discussion. A review of the practicalities and challenges associated with the use of wearable sensors for quantification of fall risk in older people. Z Gerontol Geriatr. 2012;45(8):694–706. https://doi.org/10.1007/s00391-012-0407-2.
Article
CAS
PubMed
Google Scholar