Faulkner KA, Redfern MS, Cauley JA, Landsittel DP, Studenski SA, Rosano C. Multitasking: association between poorer performance and a history of recurrent falls. J Am Geriatr Soc. 2007;55(4):570–6. https://doi.org/10.1111/j.1532-5415.2007.01147.x.
Article
PubMed
Google Scholar
Paul SS, Ada L, Canning CG. Automaticity of walking–implications for physiotherapy practice. Phys Ther Rev. 2005;10(1):15–23. https://doi.org/10.1179/108331905X43463.
Article
Google Scholar
Takagi D, Nishida Y, Fujita D. Age-associated changes in the level of physical activity in elderly adults. J Phys Ther Sci. 2013;27(12):3685–7. https://doi.org/10.1589/jpts.27.3685.
Article
Google Scholar
Sun F, Norman IJ, While AE. Physical activity in older people: a systematic review. BMC Public Health. 2013;13(1):449. https://doi.org/10.1186/1471-2458-13-449.
Article
PubMed
PubMed Central
Google Scholar
Tomas-Carus P, Biehl-Printes C, Pereira C, Veiga G, Costa A, Collado-Mateo D. Dual task performance and history of falls in community-dwelling older adults. Exp Geronto. 2019;120:35–9. https://doi.org/10.1016/j.exger.2019.02.015.
Article
Google Scholar
Nasar JL, Troyer D. Pedestrian injuries due to mobile phone use in public places. Accid Anal Prev. 2013;57:91–5. https://doi.org/10.1016/j.aap.2013.03.021.
Article
PubMed
Google Scholar
Palmiero M, Piccardi L, Boccia M, Baralla F, Cordellieri P, Sgalla R. Neural correlates of simulated driving while performing a secondary task: a review. Front Psychol. 2019;10:1045. https://doi.org/10.3389/fpsyg.2019.01045.
Article
PubMed
PubMed Central
Google Scholar
Doumas M, Smolders C, Krampe RT. Task prioritization in aging: effects of sensory information on concurrent posture and memory performance. Exp Brain Res. 2008;187(2):275–81. https://doi.org/10.1007/s00221-008-1302-3.
Article
PubMed
Google Scholar
Lacour M, Bernard-Demanze L, Dumitrescu MM. Posture control, aging, and attention resources: models and posture-analysis methods. Neurophysiol Clin. 2008;38(6):411–21. https://doi.org/10.1016/j.neucli.2008.09.005.
Article
CAS
PubMed
Google Scholar
Wollesen B, Voelcker-Rehage C, Regenbrecht T, Mattes K. Influence of a visual–verbal Stroop test on standing and walking performance of older adults. Neuroscience. 2016;318:166–77. https://doi.org/10.1016/j.neuroscience.2016.01.031.
Article
CAS
PubMed
Google Scholar
Kahneman D. Attention and effort. Englewood Cliffs: Prentice-Hall; 1973.
Google Scholar
Wickens CD. Processing resources and attention. Multiple-task performance; 1991. p. 3–34.
Google Scholar
Schaefer S, Schumacher V. The interplay between cognitive and motor functioning in healthy older adults: findings from dual-task studies and suggestions for intervention. Gerontology. 2011;57(3):239–46. https://doi.org/10.1159/000322197.
Article
PubMed
Google Scholar
Lindenberger U, Marsiske M, Baltes PB. Memorizing while walking: increase in dual-task costs from young adulthood to old age. Psychol Aging. 2000;15(3):417–36. https://doi.org/10.1037/0882-7974.15.3.417.
Article
CAS
PubMed
Google Scholar
Menant JC, Schoene D, Sarofim M, Lord SR. Single and dual task tests of gait speed are equivalent in the prediction of falls in older people: a systematic review and meta-analysis. Ageing Res Rev. 2014;16:83–104. https://doi.org/10.1016/j.arr.2014.06.001.
Article
PubMed
Google Scholar
Wollesen B, Wanstrath M, Van Schooten KS, Delbaere K. A taxonomy of cognitive tasks to evaluate cognitive-motor interference on spatiotemoporal gait parameters in older people: a systematic review and meta-analysis. Eur Rev Aging Phys Act. 2019b;16(1):12. https://doi.org/10.1186/s11556-019-0218-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011;35(3):715–28. https://doi.org/10.1016/j.neubiorev.2010.08.008.
Article
PubMed
Google Scholar
Gschwind Y, Bridenbaugh S. The role of gait analysis. Early detection of dementia and risk of falling. Der Informierte Arzt. 2011;6:39–41 Available from: https://www.tellmed.ch/include_php/previewdoc.php?file_id=8223.
Google Scholar
Beauchet O, Allali G, Sekhon H, Verghese J, Guilain S, Steinmetz JP, et al. Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: the biomathics and Canadian gait consortiums initiative. Front Hum Neurosci. 2017 Aug;11(353):1–14. https://doi.org/10.3389/fnhum.2017.00353.
Article
Google Scholar
Washabaugh EP, Kalyanaraman T, Adamczyk PG, Claflin ES, Krishnan C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture. 2017;55:87–93. https://doi.org/10.1016/j.gaitpost.2017.04.013.
Article
PubMed
PubMed Central
Google Scholar
Klotzbier TJ, Schott N. Cognitive-motor interference during walking in older adults with probable mild cognitive impairment. Front Aging Neurosci. 2017;9:350. https://doi.org/10.3389/fnagi.2017.00350.
Article
PubMed
PubMed Central
Google Scholar
Gomes GDC, Teixeira-Salmela LF, Freitas FASD, Fonseca MLM, Pinheiro MDB, Morais VADC. Gait performance of the elderly under dual-task conditions: review of instruments employed and kinematic parameters. Rev Bras Geriatr Gerontol. 2016;19(1):165–82. https://doi.org/10.1590/1809-9823.2016.14159.
Article
Google Scholar
Smith E, Cusack T, Cunningham C, Blake C. The influence of a cognitive dual task on the gait parameters of healthy older adults: a systematic review and meta-analysis. J Aging Phys Act. 2017;25(4):671–86. https://doi.org/10.1123/japa.2016-0265.
Article
PubMed
Google Scholar
Wollesen B, Mattes K, Rönnfeldt J. Influence of age, gender and test conditions on the reproducibility of dual-task walking performance. Aging Clin Exp Res. 2017;29(4):761–9. https://doi.org/10.1007/s40520-016-0664-9.
Article
PubMed
Google Scholar
Webster KE, Wittwer JE, Feller JA. Validity of the GAITRite® walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture. 2005;22(4):317–21. https://doi.org/10.1016/j.gaitpost.2004.10.005.
Article
PubMed
Google Scholar
Cutlip RG, Mancinelli C, Huber F, DiPasquale J. Evaluation of an instrumented walkway for measurement of the kinematic parameters of gait. Gait Posture. 2000;12(2):134–8. https://doi.org/10.1016/S0966-6362(00)00062-X.
Article
CAS
PubMed
Google Scholar
Lee M, Song C, Lee K, Shin D, Shin S. Agreement between the spatio-temporal gait parameters from treadmill-based photoelectric cell and the instrumented treadmill system in healthy young adults and stroke patients. Med Sci Monit. 2014;20:1210. https://doi.org/10.12659/MSM.890658.
Article
PubMed
PubMed Central
Google Scholar
Mariani B, Hoskovec C, Rochat S, Büla C, Penders J, Aminian K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech. 2010;43(15):2999–3006. https://doi.org/10.1016/j.jbiomech.2010.07.003.
Article
PubMed
Google Scholar
Bourgeois AB, Mariani B, Aminian K, Zambelli PY, Newman CJ. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. Gait Posture. 2014;39:436–42. https://doi.org/10.1016/j.gaitpost.2013.08.029.
Article
Google Scholar
Lienhard K, Schneider D, Maffiuletti NA. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med Eng Phys. 2013;35(4):500–4. https://doi.org/10.1016/j.medengphy.2012.06.015.
Article
PubMed
Google Scholar
Lee MM, Song CH, Lee KJ, Jung SW, Shin DC, Shin SH. Concurrent validity and test-retest reliability of the OPTOGait photoelectric cell system for the assessment of spatio-temporal parameters of the gait of young adults. J Phys Ther Sci. 2014;26(1):81–5. https://doi.org/10.1589/jpts.26.81.
Article
PubMed
PubMed Central
Google Scholar
Schmitz-Hübsch T, Brandt AU, Pfueller C, Zange L, Seidel A, Kühn AA. Accuracy and repeatability of two methods of gait analysis–GaitRite™ und mobility lab™–in subjects with cerebellar ataxia. Gait Posture. 2016;48:194–201. https://doi.org/10.1016/j.gaitpost.2016.05.014.
Article
PubMed
Google Scholar
World Medical Association. Declaration of Helsinki, ethical principles for medical research involving human subjects. 64 nd WMA General Assembly, Fortaleza, Brazil. 2013.. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects. Accessed 1 Apr 2021.
Rudisch J, Jöllenbeck T, Vogt L, Cordes T, Klotzbier TJ, Vogel O. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters. Gait Posture. 2021;85:55–64. https://doi.org/10.1016/j.gaitpost.2021.01.013.
Article
PubMed
Google Scholar
Cordes T, Bischoff LL, Schoene D, Schott N, Voelcker-Rehage C, Meixner C. A multicomponent exercise intervention to improve physical functioning, cognition and psychosocial well-being in elderly nursing home residents: a study protocol of a randomized controlled trial in the PROCARE (prevention and occupational health in long-term care) project. BMC Geriatr. 2019;19(1):369. https://doi.org/10.1186/s12877-019-1386-6.
Article
PubMed
PubMed Central
Google Scholar
Menz HB, Latt MD, Tiedemann A, San Kwan MM, Lord SR. Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture. 2004;20(1):20–5. https://doi.org/10.1016/S0966-6362(03)00068-7.
Article
PubMed
Google Scholar
Plummer P, Eskes G. Measuring treatment effects on dual-task performance: a framework for research and clinical practice. Front Hum Neurosci. 2015;9:225. https://doi.org/10.3389/fnhum.2015.00225.
Article
PubMed
PubMed Central
Google Scholar
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016 Jun;15(2):155–63. https://doi.org/10.1016/j.jcm.2016.02.012.
Article
PubMed
PubMed Central
Google Scholar
Mokkink LB, Terwee CB, Gibbons E, Stratford PW, Alonso J, Patrick DL, et al. Inter-rater agreement and reliability of the COSMIN (COnsensus-based standards for the selection of health status measurement instruments) checklist. BMC Med Res Methodol. 2010 Sep;10(82):1–11. https://doi.org/10.1186/1471-2288-10-82.
Article
Google Scholar
Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217–38. https://doi.org/10.2165/00007256-199826040-00002.
Article
CAS
PubMed
Google Scholar
Hollman JH, Beckman BA, Brandt RA, Merriwether EN, Williams RT, Nordrum JT. Minimum detectable change in gait velocity during acute rehabilitation following hip fracture. J Geriatr Phys Ther. 2008;31(2):53–6. https://doi.org/10.1519/00139143-200831020-00003.
Article
PubMed
Google Scholar
Hollman JH, Childs KB, McNeil ML, Mueller AC, Quilter CM, Youdas JW. Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait Posture. 2010;32(1):23–8. https://doi.org/10.1016/j.gaitpost.2010.02.017.
Article
PubMed
Google Scholar
Schwenk M, Gogulla S, Englert S, Czempik A, Hauer K. Test–retest reliability and minimal detectable change of repeated sit-to-stand analysis using one body fixed sensor in geriatric patients. Physio Meas. 2012;33(11):1931–46. https://doi.org/10.1088/0967-3334/33/11/1931.
Article
CAS
Google Scholar
Faul F, Erdfelder E, Lang AG, Buchner A. G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91. https://doi.org/10.3758/BF03193146.
Article
PubMed
Google Scholar
Tabachnick BG, Fidell LS. Using multivariate statistics 6th edn. Pearson Education Limited: New International Edition; 2013.
Google Scholar
Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231–40. https://doi.org/10.1519/15184.1.
Article
PubMed
Google Scholar
Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8. https://doi.org/10.1037/0033-2909.86.2.420.
Article
CAS
PubMed
Google Scholar
Kerber KA, Ishiyama GP, Baloh RW. A longitudinal study of oculomotor function in normal older people. Neurobiol Aging. 2006;27(9):1346–53. https://doi.org/10.1016/j.neurobiolaging.2005.07.009.
Article
PubMed
Google Scholar
Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin J. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33. https://doi.org/10.1016/j.neubiorev.2009.10.005.
Article
CAS
PubMed
Google Scholar
Verdú E, Ceballos D, Vilches JJ, Navarro X. Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst. 2000;5:91–208. https://doi.org/10.1111/j.1529-8027.2000.00026.x.
Article
Google Scholar
Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82(8):1050–6. https://doi.org/10.1053/apmr.2001.24893.
Article
CAS
PubMed
Google Scholar
Morrison S, Colberg SR, Parson HK, Neumann S, Handel R, Vinik EJ. Walking-induced fatigue leads to increased falls risk in older adults. J Am Med Dir Assoc. 2016;17(5):402–9. https://doi.org/10.1016/j.jamda.2015.12.013.
Article
PubMed
PubMed Central
Google Scholar
Scott D, McLaughlin P, Nicholson GC, Ebeling PR, Stuart AL, Kay D. Changes in gait performance over several years are associated with recurrent falls status in community-dwelling older women at high risk of fracture. Age Ageing. 2015;44(2):287–93. https://doi.org/10.1093/ageing/afu169.
Article
PubMed
Google Scholar
Wollesen B, Voelcker-Rehage C. Differences in cognitive-motor interference in older adults while walking and performing a visual-verbal Stroop task. Front Aging Neurosci. 2019;10:426. https://doi.org/10.3389/fnagi.2018.00426.
Article
PubMed
PubMed Central
Google Scholar
Muhaidat J, Kerr A, Evans JJ, Skelton DA. The test–retest reliability of gait-related dual task performance in community-dwelling fallers and non-fallers. Gait Posture. 2013;38(1):43–50. https://doi.org/10.1016/j.gaitpost.2012.10.011.
Article
PubMed
Google Scholar
Stoffregen TA, Hove P, Bardy BG, Riley M, Bonnet CT. Postural stabilization of perceptual but not cognitive performance. J Mot Behav. 2007;39(2):126–38. https://doi.org/10.3200/JMBR.39.2.126-138.
Article
PubMed
Google Scholar
Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol [A]. 2001;54:1143–54. https://doi.org/10.1080/713756012.
Article
CAS
Google Scholar
Huxhold O, Li SC, Schmiedek F, Lindenberger U. Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull. 2006;69(3):294–305. https://doi.org/10.1016/j.brainresbull.2006.01.002.
Article
PubMed
Google Scholar
Verrel J, Lövdén M, Schellenbach M, Schaefer S, Lindenberger U. Interacting effects of cognitive load and adult age on the regularity of whole-body motion during treadmill walking. Psychol Aging. 2009;24(1):75–81. https://doi.org/10.1037/a0014272.
Article
PubMed
Google Scholar
Bilney B, Morris M, Webster K. Concurrent related validity of the GAITRite® walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture. 2003;17(1):68–74. https://doi.org/10.1016/S0966-6362(02)00053-X.
Article
PubMed
Google Scholar
Kobsar D, Charlton JM, Tse CT, Esculier JF, Graffos A, Krowchuk NM, et al. Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis. J Neuroeng Rehabilitation. 2020;17(62):1–21. https://doi.org/10.1186/s12984-020-00685-3.
Article
Google Scholar
Terwee CB, Bot SD, de Boer MR, van der Windt DA, Knol DL, Dekker J, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J Clin Epidemiol. 2007;60(1):34–42. https://doi.org/10.1016/j.jclinepi.2006.03.012.
Article
PubMed
Google Scholar