United Nations. Department of Economic and Social Affairs, population division. World population prospects. New York: United Nations; 2019.
Google Scholar
World Health Organization. Global spending on health: a world in transition. Geneva; 2019.
Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, et al. European Society of Cardiology: cardiovascular disease statistics 2019. Eur Heart J. 2020;41(1):12–85. https://doi.org/10.1093/eurheartj/ehz859 .
Article
PubMed
Google Scholar
Melo RC, Quitério RJ, Takahashi A, Silva E, Martins L, Catai AM. High eccentric strength training reduces heart rate variability in healthy older men. Br J Sports Med. 2008;42(1):59–63. https://doi.org/10.1136/bjsm.2007.035246.
Article
CAS
PubMed
Google Scholar
Albinet CT, Boucard G, Bouquet CA, Audiffren M. Increased heart rate variability and executive performance after aerobic training in the elderly. Eur J Appl Physiol. 2010;109(4):617–24. https://doi.org/10.1007/s00421-010-1393-y.
Article
PubMed
Google Scholar
McCraty R, Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med. 2015;4(1):46–61. https://doi.org/10.7453/gahmj.2014.073.
Article
PubMed
PubMed Central
Google Scholar
Draghici AE, Taylor JA. The physiological basis and measurement of heart rate variability in humans. J Physiol Anthropol. 2016;35(1):22. https://doi.org/10.1186/s40101-016-0113-7.
Article
PubMed
PubMed Central
Google Scholar
Ernst G. Heart-rate variability-more than heart beats? Front Public Health. 2017;5:240. https://doi.org/10.3389/fpubh.2017.00240.
Article
PubMed
PubMed Central
Google Scholar
Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front in Public Health. 2017;5:258. https://doi.org/10.3389/fpubh.2017.00258.
Article
Google Scholar
Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Front Psychol. 2014;5. https://doi.org/10.3389/fpsyg.2014.01040.
Tsuji H, Larson MG, Venditti FJ, Manders ES, Evans JC, Feldman CL, et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study Circulation. 1996;94(11):2850–5. https://doi.org/10.1161/01.cir.94.11.2850.
Article
CAS
PubMed
Google Scholar
Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne CA, et al. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC study. Atherosclerosis Risk In Communities Circulation. 2000;102(11):1239–44. https://doi.org/10.1161/01.cir.102.11.1239.
Article
CAS
PubMed
Google Scholar
Antelmi I, de Paula RS, Shinzato AR, Peres CA, Mansur AJ, Grupi CJ. Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol. 2004;93(3):381–5. https://doi.org/10.1016/j.amjcard.2003.09.065.
Article
PubMed
Google Scholar
Ogliari G, Mahinrad S, Stott DJ, Jukema JW, Mooijaart SP, MacFarlane PW, et al. Resting heart rate, heart rate variability and functional decline in old age. CMAJ. 2015;187(15):E442–9. https://doi.org/10.1503/cmaj.150462.
Article
PubMed
PubMed Central
Google Scholar
Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation. 1998;98(15):1510–6. https://doi.org/10.1161/01.CIR.98.15.1510.
Article
CAS
PubMed
Google Scholar
de Freitas VP, Da Passos RS, Oliveira AA, Ribeiro ÍJS, Freire IV, Schettino L, et al. Sarcopenia is associated to an impaired autonomic heart rate modulation in community-dwelling old adults. Arch Gerontol Geriatr. 2018;76:120–4. https://doi.org/10.1016/j.archger.2018.01.006.
Article
PubMed
Google Scholar
Virtanen R, Jula A, Kuusela T, Helenius H, Voipio-Pulkki L-M. Reduced heart rate variability in hypertension: associations with lifestyle factors and plasma renin activity. J Hum Hypertens. 2003;17(3):171–9. https://doi.org/10.1038/sj.jhh.1001529.
Article
CAS
PubMed
Google Scholar
Kanegusuku H, Queiroz A, Silva V, de Mello MT, Ugrinowitsch C, Forjaz C. High-intensity progressive resistance training increases strength with no change in cardiovascular function and autonomic neural regulation in older adults. J Aging Phys Act. 2015;23(3):339–45. https://doi.org/10.1123/japa.2012-0324.
Article
PubMed
Google Scholar
Myers J, McAuley P, Lavie CJ, Despres J-P, Arena R, Kokkinos P. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Prog Cardiovasc Dis. 2015;57(4):306–14. https://doi.org/10.1016/j.pcad.2014.09.011.
Article
PubMed
Google Scholar
Varas-Diaz G, Subramaniam S, Delgado L, Phillips SA, Bhatt T. Effect of an exergaming-based dance training paradigm on autonomic nervous system modulation in healthy older adults: a randomized controlled trial. J Aging Phys Act. 2020;29(1):1–9. https://doi.org/10.1123/japa.2019-0452.
Article
PubMed
Google Scholar
Audette JF, Jin YS, Newcomer R, Stein L, Duncan G, Frontera WR. Tai Chi versus brisk walking in elderly women. Age Ageing. 2006;35(4):388–93. https://doi.org/10.1093/ageing/afl006.
Article
PubMed
Google Scholar
Wanderley FAC, Moreira A, Sokhatska O, Palmares C, Moreira P, Sandercock G, et al. Differential responses of adiposity, inflammation and autonomic function to aerobic versus resistance training in older adults. Exp Gerontol. 2013;48(3):326–33. https://doi.org/10.1016/j.exger.2013.01.002.
Article
CAS
PubMed
Google Scholar
Abhishekh HA, Nisarga P, Kisan R, Meghana A, Chandran S, Trichur R, et al. Influence of age and gender on autonomic regulation of heart. J Clin Monit Comput. 2013;27(3):259–64. https://doi.org/10.1007/s10877-012-9424-3.
Article
PubMed
Google Scholar
Voss A, Schroeder R, Heitmann A, Peters A, Perz S. Short-term heart rate variability - influence of gender and age in healthy subjects. PLoS One. 2015;10(3):e0118308. https://doi.org/10.1371/journal.pone.0118308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yataco AR, Fleisher LA, Katzel LI. Heart rate variability and cardiovascular fitness in senior athletes. Am J Cardiol. 1997;80(10):1389–91. https://doi.org/10.1016/s0002-9149(97)00697-8.
Article
CAS
PubMed
Google Scholar
Buchheit M, Simon C, Viola AU, Doutreleau S, Piquard F, Brandenberger G. Heart rate variability in sportive elderly: relationship with daily physical activity. Med Sci Sports Exerc. 2004;36(4):601–5. https://doi.org/10.1249/01.mss.0000121956.76237.b5.
Article
PubMed
Google Scholar
Soares-Miranda L, Sattelmair J, Chaves P, Duncan GE, Siscovick DS, Stein PK, et al. Physical activity and heart rate variability in older adults: the cardiovascular health study. Circulation. 2014;129(21):2100–10. https://doi.org/10.1161/CIRCULATIONAHA.113.005361.
Article
PubMed
PubMed Central
Google Scholar
Dorey TW, O'Brien MW, Kimmerly DS. The influence of aerobic fitness on electrocardiographic and heart rate variability parameters in young and older adults. Auton Neurosci. 2019;217:66–70. https://doi.org/10.1016/j.autneu.2019.01.004.
Article
PubMed
Google Scholar
Kurita A, Takase B, Kodani E, Iwahara S, Kusama Y, Atarashi H. Prognostic value of heart rate variability in comparison with annual health examinations in very elderly subjects. J Nippon Med Sch. 2013;80(6):420–5. https://doi.org/10.1272/jnms.80.420.
Article
PubMed
Google Scholar
Monahan KD, Tanaka H, Dinenno FA, Seals DR. Central arterial compliance is associated with age- and habitual exercise-related differences in cardiovagal baroreflex sensitivity. Circulation. 2001;104(14):1627–32. https://doi.org/10.1161/hc3901.096670.
Article
CAS
PubMed
Google Scholar
Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a "set up" for vascular disease. Circulation. 2003;107(1):139–46. https://doi.org/10.1161/01.cir.0000048892.83521.58.
Article
PubMed
Google Scholar
La Rovere MT, Pinna GD. Beneficial effects of physical activity on baroreflex control in the elderly. Ann Noninvasive Electrocardiol. 2014;19(4):303–10. https://doi.org/10.1111/anec.12170.
Article
PubMed
PubMed Central
Google Scholar
Bruseghini P, Calabria E, Tam E, Milanese C, Oliboni E, Pezzato A, et al. Effects of eight weeks of aerobic interval training and of isoinertial resistance training on risk factors of cardiometabolic diseases and exercise capacity in healthy elderly subjects. Oncotarget. 2015;6:16998–7015. doi:https://doi.org/10.18632/oncotarget.4031.
Martins D, Nelson K, Pan D, Tareen N, Norris K. The effect of gender on age-related blood pressure changes and the prevalence of isolated systolic hypertension among older adults: data from NHANES III. J Gend Specif Med. 2001;4:10–3 20.
CAS
PubMed
Google Scholar
Schutzer KA, Graves BS. Barriers and motivations to exercise in older adults. Prev Med. 2004;39(5):1056–61. https://doi.org/10.1016/j.ypmed.2004.04.003.
Article
PubMed
Google Scholar
Craighead DH, Heinbockel TC, Hamilton MN, Bailey EF, MacDonald MJ, Gibala MJ, et al. Time-efficient physical training for enhancing cardiovascular function in midlife and older adults: promise and current research gaps. J Appl Physiol. 2019;127(5):1427–40. https://doi.org/10.1152/japplphysiol.00381.2019.
Article
CAS
PubMed
Google Scholar
da Silva CC, Pereira LM, Cardoso JR, Moore JP, Nakamura FY. The effect of physical training on heart rate variability in healthy children: a systematic review with Meta-analysis. Pediatr Exerc Sci. 2014;26(2):147–58. https://doi.org/10.1123/pes.2013-0063.
Article
PubMed
Google Scholar
Grässler B, Thielmann B, Böckelmann I, Hökelmann A. Effects of different training interventions on heart rate variability and cardiovascular health and risk factors in young and middle-aged adults: a systematic review. Front Physiol. 2021;12:532. https://doi.org/10.3389/fphys.2021.657274.
Article
Google Scholar
Villafaina S, Collado-Mateo D, Fuentes JP, Merellano-Navarro E, Gusi N. Physical exercise improves heart rate variability in patients with type 2 diabetes: a systematic review. Curr Diab Rep. 2017;17(11):110. https://doi.org/10.1007/s11892-017-0941-9.
Article
PubMed
Google Scholar
Belvederi Murri M, Folesani F, Zerbinati L, Nanni MG, Ounalli H, Caruso R, et al. Physical activity promotes health and reduces cardiovascular mortality in depressed populations: a literature overview. Int J Environ Res Public Health. 2020;17(15). https://doi.org/10.3390/ijerph17155545.
Palma S, Keilani M, Hasenoehrl T, Crevenna R. Impact of supportive therapy modalities on heart rate variability in cancer patients - a systematic review. Disabil Rehabil. 2020;42(1):36–43. https://doi.org/10.1080/09638288.2018.1514664.
Article
PubMed
Google Scholar
Sandercock GRH, Bromley PD, Brodie DA. Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc. 2005;37(3):433–9. https://doi.org/10.1249/01.mss.0000155388.39002.9d.
Article
PubMed
Google Scholar
Raffin J, Barthélémy J-C, Dupré C, Pichot V, Berger M, Féasson L, et al. Exercise frequency determines heart rate variability gains in older people: a Meta-analysis and Meta-regression. Sports Med. 2019;49(5):719–29. https://doi.org/10.1007/s40279-019-01097-7.
Article
PubMed
Google Scholar
Bhati P, Moiz JA, Menon GR, Hussain ME. Does resistance training modulate cardiac autonomic control? A systematic review and meta-analysis. Clin Auton Res. 2019;29(1):75–103. https://doi.org/10.1007/s10286-018-0558-3.
Article
PubMed
Google Scholar
Sant'Ana LdO, Machado S, Ribeiro AAdS, Dos Reis NR, Campos YdAC, Da Silva JGV, et al. Effects of Cardiovascular Interval Training in Healthy Elderly Subjects: A Systematic Review. Front Physiol. 2020;11:739. doi:https://doi.org/10.3389/fphys.2020.00739.
McKune AJ, Peters B, Ramklass SS, van Heerden J, Roberts C, Krejčí J, et al. Autonomic cardiac regulation, blood pressure and cardiorespiratory fitness responses to different training doses over a 12 week group program in the elderly. Arch Gerontol Geriatr. 2017;70:130–5. https://doi.org/10.1016/j.archger.2017.01.012.
Article
CAS
PubMed
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12. https://doi.org/10.1016/j.jclinepi.2009.06.005.
Article
PubMed
Google Scholar
Smart NA, Waldron M, Ismail H, Giallauria F, Vigorito C, Cornelissen V, et al. Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc. 2015;13(1):9–18. https://doi.org/10.1097/XEB.0000000000000020.
Article
PubMed
Google Scholar
Dobbs WC, Fedewa MV, MacDonald HV, Holmes CJ, Cicone ZS, Plews DJ, et al. The accuracy of acquiring heart rate variability from portable devices: a systematic review and Meta-analysis. Sports Med. 2019;49(3):417–35. https://doi.org/10.1007/s40279-019-01061-5.
Article
PubMed
Google Scholar
Hottenrott K, Hoos O, Esperer HD. Heart rate variability and physical exercise. Current status. [Herzfrequenzvariabilität und sport]. Herz. 2006;31(6):544–52. https://doi.org/10.1007/s00059-006-2855-1.
Article
PubMed
Google Scholar
Sammito S, Böckelmann I. Factors influencing heart rate variability. ICFJ 2016. doi:https://doi.org/10.17987/icfj.v6i0.242.
World Health Organization. Guideline for the pharmacological treatment of hypertension in adults. 2021.
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. https://doi.org/10.1371/journal.pmed.1000100.
Article
PubMed
PubMed Central
Google Scholar
Herold F, Müller P, Gronwald T, Müller NG. Dose–response matters! – a perspective on the exercise prescription in exercise–cognition research. Front Psychol. 2019;10. https://doi.org/10.3389/fpsyg.2019.02338.
Sammito S, Böckelmann I. Analyse der Herzfreequenzvariabilität. Mathematische Basis und praktische Anwendung. [Analysis of heart rate variability. Mathematical description and practical application]. Herz. 2015;40 Suppl 1:76–84. doi:https://doi.org/10.1007/s00059-014-4145-7.
Albinet CT, Abou-Dest A, André N, Audiffren M. Executive functions improvement following a 5-month aquaerobics program in older adults: role of cardiac vagal control in inhibition performance. Biol Psychol. 2016;115:69–77. https://doi.org/10.1016/j.biopsycho.2016.01.010.
Article
PubMed
Google Scholar
Okazaki K, Iwasaki K-I, Prasad A, Palmer MD, Martini ER, Fu Q, et al. Dose-response relationship of endurance training for autonomic circulatory control in healthy seniors. J Appl Physiol. 2005;99(3):1041–9. https://doi.org/10.1152/japplphysiol.00085.2005.
Article
PubMed
Google Scholar
Gerage AM, Forjaz CLM, Nascimento MA, Januário RSB, Polito MD, Cyrino ES. Cardiovascular adaptations to resistance training in elderly postmenopausal women. Int J Sports Med. 2013;34(09):806–13. https://doi.org/10.1055/s-0032-1331185.
Article
CAS
PubMed
Google Scholar
Eggenberger P, Annaheim S, Kündig KA, Rossi RM, Münzer T, de Bruin ED. Heart rate variability mainly relates to cognitive executive functions and improves through Exergame training in older adults: a secondary analysis of a 6-month randomized controlled trial. Front Aging Neurosci. 2020;12. https://doi.org/10.3389/fnagi.2020.00197.
Rezende Barbosa MP, Vanderlei LC, Neves LM, Takahashi C, Torquato PR, Silva AK, et al. Functional training in postmenopause: cardiac autonomic modulation and cardiorespiratory parameters, a randomized trial. Geriatr Gerontol Int. 2019;19(8):823–8. https://doi.org/10.1111/ggi.13690.
Article
PubMed
Google Scholar
Rossi FE, Ricci-Vitor AL, Buonani CS, Vanderlei LC, Freitas Jr IF. The effects of combined aerobic and resistance training on heart rate variability in postmenopausal women. Medicina (brazil). 2013;46:171–7.
Verheyden B, Eijnde BO, Beckers F, Vanhees L, Aubert AE. Low-dose exercise training does not influence cardiac autonomic control in healthy sedentary men aged 55–75 years. J Sports Sci 2006;24:1137–1147. doi:https://doi.org/10.1080/02640410500497634, Low-dose exercise training does not influence cardiac autonomic control in healthy sedentary men aged 55 – 75 years, 11.
Malik M. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043–65. https://doi.org/10.1161/01.CIR.93.5.1043.
Article
Google Scholar
Katona PG, McLean M, Dighton DH, Guz A. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol Respir Environ Exerc Physiol. 1982;52(6):1652–7. https://doi.org/10.1152/jappl.1982.52.6.1652.
Article
CAS
PubMed
Google Scholar
Grässler B, Thielmann B, Böckelmann I, Hökelmann A. Effects of different exercise interventions on cardiac autonomic control and secondary health factors in middle-aged adults: a systematic review. J Cardiovasc Dev Dis. 2021;8(8). https://doi.org/10.3390/jcdd8080094.
Taylor AC, McCartney N, Kamath MV, Wiley RL. Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc. 2003;35(2):251–6. https://doi.org/10.1249/01.MSS.0000048725.15026.B5.
Article
PubMed
Google Scholar
Forte R, de Vito G, Figura F. Effects of dynamic resistance training on heart rate variability in healthy older women. Eur J Appl Physiol. 2003;89(1):85–9. https://doi.org/10.1007/s00421-002-0775-1.
Article
PubMed
Google Scholar
Da Barbosa MPCdR, da Silva, Anne Kastelianne França, Bernardo AFB, Souza NM de, Neto Junior J, Pastre CM, Vanderlei LCM. Influence of resistance training on cardiac autonomic modulation: literature review. Medical Express 2014. doi:https://doi.org/10.5935/MedicalExpress.2014.05.13.
Nürnberger J, Kribben A, Philipp T, Erbel R. Die arterielle compliance (Gefässsteifigkeit) zur Aufdeckung einer subklinischen Atherosklerose. [arterial compliance (stiffness) as a marker of subclinical atherosclerosis]. Herz. 2007;32(5):379–86. https://doi.org/10.1007/s00059-007-3030-z.
Article
PubMed
Google Scholar
Bouaziz W, Vogel T, Schmitt E, Kaltenbach G, Geny B, Lang PO. Health benefits of aerobic training programs in adults aged 70 and over: a systematic review. Arch Gerontol Geriatr. 2017;69:110–27. https://doi.org/10.1016/j.archger.2016.10.012.
Article
PubMed
Google Scholar
Väänänen J, Xusheng S, Wang S, Laitinen T, Pekkarinen H, Länsimies E. Taichiquan acutely increases heart rate variability. Clin Physiol Funct Imaging. 2002;22(1):2–3. https://doi.org/10.1046/j.1475-097x.2002.00355.x.
Article
PubMed
Google Scholar
Lu W-A, Kuo C-D. The effect of tai chi Chuan on the autonomic nervous modulation in older persons. Med Sci Sports Exerc. 2003;35(12):1972–6. https://doi.org/10.1249/01.MSS.0000099242.10669.F7.
Article
PubMed
Google Scholar
Hwang PW-N, Braun KL. The effectiveness of dance interventions to improve older Adults' health: a systematic literature review. Altern Ther Health Med. 2015;21(5):64–70.
PubMed
PubMed Central
Google Scholar
Levy WC, Cerqueira MD, Harp GD, Johannessen K-A, Abrass IB, Schwartz RS, et al. Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am J Cardiol. 1998;82(10):1236–41. https://doi.org/10.1016/s0002-9149(98)00611-0.
Article
CAS
PubMed
Google Scholar
Schuit AJ, van Amelsvoort LG, Verheij TC, Rijneke RD, Maan AC, Swenne CA, et al. Exercise training and heart rate variability in older people. Med Sci Sports Exerc. 1999;31(6):816–21. https://doi.org/10.1097/00005768-199906000-00009.
Article
CAS
PubMed
Google Scholar
Hunt BE, Farquhar WB, Taylor JA. Does reduced vascular stiffening fully explain preserved cardiovagal baroreflex function in older, physically active men? Circulation. 2001;103(20):2424–7. https://doi.org/10.1161/01.cir.103.20.2424.
Article
CAS
PubMed
Google Scholar
Berry KL, Cameron JD, Dart AM, Dewar EM, Gatzka CD, Jennings GL, et al. Large-artery stiffness contributes to the greater prevalence of systolic hypertension in elderly women. J Am Geriatr Soc. 2004;52(3):368–73. https://doi.org/10.1111/j.1532-5415.2004.52107.x.
Article
PubMed
Google Scholar
Clegg A, Hassan-Smith Z. Frailty and the endocrine system. Lancet Diabetes Endocrinol. 2018;6(9):743–52. https://doi.org/10.1016/S2213-8587(18)30110-4.
Article
CAS
PubMed
Google Scholar
Seals DR, Taylor JA, Ng AV, Esler MD. Exercise and aging: autonomic control of the circulation. Med Sci Sports Exerc. 1994;26(5):568–76. https://doi.org/10.1249/00005768-199405000-00008.
Article
CAS
PubMed
Google Scholar
Stratton JR, Levy WC, Caldwell JH, Jacobson A, May J, Matsuoka D, et al. Effects of aging on cardiovascular responses to parasympathetic withdrawal. J Am Coll Cardiol. 2003;41(11):2077–83. https://doi.org/10.1016/s0735-1097(03)00418-2.
Article
PubMed
Google Scholar
Cortez-Cooper MY, DeVan AE, Anton MM, Farrar RP, Beckwith KA, Todd JS, et al. Effects of high intensity resistance training on arterial stiffness and wave reflection in women. Am J Hypertens. 2005;18(7):930–4. https://doi.org/10.1016/j.amjhyper.2005.01.008.
Article
PubMed
Google Scholar
Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br J Sports Med. 2013;47(6):393–6. https://doi.org/10.1136/bjsports-2012-090488.
Article
PubMed
Google Scholar
Ross R, Rissanen J. Mobilization of visceral and subcutaneous adipose tissue in response to energy restriction and exercise. Am J Clin Nutr. 1994;60(5):695–703. https://doi.org/10.1093/ajcn/60.5.695.
Article
CAS
PubMed
Google Scholar
Liberman K, Forti LN, Beyer I, Bautmans I. The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: a systematic review. Curr Opin Clin Nutr Metab Care. 2017;20(1):30–53. https://doi.org/10.1097/MCO.0000000000000335.
Article
PubMed
Google Scholar
Rodrigues-Krause J, Farinha JB, Krause M, Reischak-Oliveira Á. Effects of dance interventions on cardiovascular risk with ageing: systematic review and meta-analysis. Complement Ther Med. 2016;29:16–28. https://doi.org/10.1016/j.ctim.2016.09.004.
Article
PubMed
Google Scholar
Boehm JK, Kubzansky LD. The heart's content: the association between positive psychological well-being and cardiovascular health. Psychol Bull. 2012;138(4):655–91. https://doi.org/10.1037/a0027448.
Article
PubMed
Google Scholar
Dubois CM, Beach SR, Kashdan TB, Nyer MB, Park ER, Celano CM, et al. Positive psychological attributes and cardiac outcomes: associations, mechanisms, and interventions. Psychosomatics. 2012;53(4):303–18. https://doi.org/10.1016/j.psym.2012.04.004.
Article
PubMed
Google Scholar
Gomes Neto M, Menezes MA, Oliveira CV. Dance therapy in patients with chronic heart failure: a systematic review and a meta-analysis. Clin Rehabil. 2014;28(12):1172–9. https://doi.org/10.1177/0269215514534089.
Article
PubMed
Google Scholar
Rehfeld K, Lüders A, Hökelmann A, Lessmann V, Kaufmann J, Brigadski T, et al. Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS One. 2018;13(7):e0196636. https://doi.org/10.1371/journal.pone.0196636.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filho M, Rodrigue BM, Aidar FJ, Reis VM, Polito MD, Venturini GP, et al. Influência dos exercícios Influência dos exercícios aeróbio e resistido sobre perfil hemodinâmico e lipídico em idosas hipertensas. Rev Bras Ci e Mov. 2011:15–22.
Besnier F, Labrunée M, Pathak A, Pavy-Le Traon A, Galès C, Sénard J-M, et al. Exercise training-induced modification in autonomic nervous system: an update for cardiac patients. Ann Phys Rehabil Med. 2017;60(1):27–35. https://doi.org/10.1016/j.rehab.2016.07.002.
Article
PubMed
Google Scholar
Martinmaki K, Hakkinen K, Mikkola J, Rusko H. Effect of low-dose endurance training on heart rate variability at rest and during an incremental maximal exercise test. Eur J Appl Physiol. 2008;104(3):541–8. https://doi.org/10.1007/s00421-008-0804-9.
Article
PubMed
Google Scholar
Kiviniemi AM, Hautala AJ, Kinnunen H, Nissilä J, Virtanen P, Karjalainen J, et al. Daily exercise prescription on the basis of HR variability among men and women. Med Sci Sports Exerc. 2010;42(7):1355–63. https://doi.org/10.1249/mss.0b013e3181cd5f39.
Article
PubMed
Google Scholar
Routledge FS, Campbell TS, McFetridge-Durdle JA, Bacon SL. Improvements in heart rate variability with exercise therapy. Can J Cardiol. 2010;26(6):303–12. https://doi.org/10.1016/S0828-282X(10)70395-0.
Article
PubMed
PubMed Central
Google Scholar
Haack KKV, Zucker IH. Central mechanisms for exercise training-induced reduction in sympatho-excitation in chronic heart failure. Auton Neurosci. 2015;188:44–50. https://doi.org/10.1016/j.autneu.2014.10.015.
Article
PubMed
Google Scholar
Kim C-S, Kim M-K, Jung H-Y, Kim M-J. Effects of exercise training intensity on cardiac autonomic regulation in habitual smokers. Ann Noninvasive Electrocardiol. 2017;22(5):e12434. https://doi.org/10.1111/anec.12434.
Article
PubMed Central
Google Scholar
Patel KP, Zheng H. Central neural control of sympathetic nerve activity in heart failure following exercise training. Am J Physiol Heart Circ Physiol. 2012;302(3):H527–37. https://doi.org/10.1152/ajpheart.00676.2011.
Article
CAS
PubMed
Google Scholar
de Abreu RM, Rehder-Santos P, Simões RP, Catai AM. Can high-intensity interval training change cardiac autonomic control? A systematic review. Braz J Phys Ther. 2019;23(4):279–89. https://doi.org/10.1016/j.bjpt.2018.09.010.
Article
PubMed
Google Scholar
Souza H, Tezini G. Autonomic Cardiovascular Damage during Post-menopause: the Role of Physical Training. Aging Dis. 2013;4:320–8. doi:https://doi.org/10.14336/AD.2013.0400320.
de Rezende Barbosa M, Júnior JN, Cassemiro BM, Bernardo A. França da Silva AK, Vanderlei FM, et al. effects of functional training on geometric indices of heart rate variability. J Sport Health Sci. 2016;5(2):183–9. https://doi.org/10.1016/j.jshs.2014.12.007.
Article
PubMed
Google Scholar
Heffernan KS, Jae SY, Vieira VJ, Iwamoto GA, Wilund KR, Woods JA, et al. C-reactive protein and cardiac vagal activity following resistance exercise training in young African-American and white men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;296(4):R1098–105. https://doi.org/10.1152/ajpregu.90936.2008.
Article
CAS
Google Scholar
Hamer M, Steptoe A. Association between physical fitness, parasympathetic control, and proinflammatory responses to mental stress. Psychosom Med. 2007;69(7):660–6. https://doi.org/10.1097/PSY.0b013e318148c4c0.
Article
PubMed
Google Scholar
de Sousa Fortes L, Pinheiro Paes P, Tavares Paes S, Oliveira Carvalho F, Serpeloni CE. Clustering vs multi-sets method in resistance training: effect on heart rate variability. Asian J Sports Med. 2018;9(1):1–6. https://doi.org/10.5812/asjsm.14576.
Article
Google Scholar
Macedo FN, Mesquita TRR, Melo VU, Mota MM, Silva TLTB, Santana MN, et al. Increased nitric oxide bioavailability and decreased sympathetic modulation are involved in vascular adjustments induced by low-intensity resistance training. Front Physiol. 2016;7:265. https://doi.org/10.3389/fphys.2016.00265.
Article
PubMed
PubMed Central
Google Scholar
Selig SE, Caery M, Menzies DG, Patterson J, Geerling RH, Williams AD, et al. Moderate-intensity resistance exercise training in patients with chronic heart failure improves strength, endurance, heart rate variability, and forearm blood flow. J Card Fail. 2004;10(1):21–30. https://doi.org/10.1016/s1071-9164(03)00583-9.
Article
PubMed
Google Scholar
Pal R, Singh SN, Chatterjee A, Saha M. Age-related changes in cardiovascular system, autonomic functions, and levels of BDNF of healthy active males: role of yogic practice. Age (Dordr). 2014;36:9683. doi:https://doi.org/10.1007/s11357-014-9683-7.
Moreira SR, Teixeira-Araujo AA, Dos Santos AO, Simões HG. Ten weeks of capoeira progressive training improved cardiovascular parameters in male practitioners. J Sports Med Phys Fitness. 2017;57:289–98. doi:https://doi.org/10.23736/S0022-4707.16.06030-8.
Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Phys. 1996;271(4):R1078–84. https://doi.org/10.1152/ajpregu.1996.271.4.R1078.
Article
CAS
Google Scholar
Pikkujämsä SM, Mäkikallio TH, Sourander LB, Räihä IJ, Puukka P, Skyttä J, et al. Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory. Circulation. 1999;100(4):393–9. https://doi.org/10.1161/01.cir.100.4.393.
Article
PubMed
Google Scholar
Carter JB, Banister EW, Blaber AP. The effect of age and gender on heart rate variability after endurance training. Med Sci Sports Exerc. 2003;35(8):1333–40. https://doi.org/10.1249/01.MSS.0000079046.01763.8F.
Article
PubMed
Google Scholar
Jakubec A, Stejskal P, Kovácová L, Elfmark M, Rehová I, Botek M, et al. Changes in heart rate variability after a six month long aerobic dance or step-dance programm in women 40-65 years old: the influence of different degrees of adherence, intensity and initial levels. Acta Universitatis Palackianae Olomucensis Gymnica. 2008;38:35–44.
Google Scholar
Wiley RL, Dunn CL, Cox RH, Hueppchen NA, Scott MS. Isometric exercise training lowers resting blood pressure. Med Sci Sports Exerc. 1992;24(7):749–54. https://doi.org/10.1249/00005768-199207000-00003.
Article
CAS
PubMed
Google Scholar
Gelecek N, Ilçin N, Subaşi SS, Acar S, Demir N, Ormen M. The effects of resistance training on cardiovascular disease risk factors in postmenopausal women: a randomized-controlled trial. Health Care Women Int. 2012;33(12):1072–85. https://doi.org/10.1080/07399332.2011.645960.
Article
PubMed
Google Scholar
Brown AD, McMorris CA, Longman RS, Leigh R, Hill MD, Friedenreich CM, et al. Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiol Aging. 2010;31(12):2047–57. https://doi.org/10.1016/j.neurobiolaging.2008.11.002.
Article
PubMed
Google Scholar
Knowlton AA, Korzick DH. Estrogen and the female heart. Mol Cell Endocrinol. 2014;389(1-2):31–9. https://doi.org/10.1016/j.mce.2014.01.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandes de Godoy M. Nonlinear Analysis of Heart Rate Variability: A Comprehensive Review. Journal of Cardiol. Ther. 2016;3:528–33. doi:https://doi.org/10.17554/j.issn.2309-6861.2016.03.101-4.
Costa MD, Redline S, Davis RB, Heckbert SR, Soliman EZ, Goldberger AL. Heart rate fragmentation as a novel biomarker of adverse cardiovascular events: the multi-ethnic study of atherosclerosis. Front Physiol. 2018;9:1117. https://doi.org/10.3389/fphys.2018.01117.
Article
PubMed
PubMed Central
Google Scholar
Medeiros AR, Leicht AS, Michael S, Boullosa D. Weekly vagal modulations and their associations with physical fitness and physical activity. Eur J Sport Sci. 2020;21(9):1–11. https://doi.org/10.1080/17461391.2020.1838619.
Article
Google Scholar
Plews DJ, Laursen PB, Kilding AE, Buchheit M. Evaluating training adaptation with heart-rate measures: a methodological comparison. Int J Sports Physiol Perform. 2013;8(6):688–91. https://doi.org/10.1123/ijspp.8.6.688.
Article
PubMed
Google Scholar
Schäfer D, Olstad BH, Wilhelm M. Can heart rate variability segment length during orthostatic test be reduced to 2 min? Med Sci Sports Exerc. 2015;47(5S):48. https://doi.org/10.1249/01.mss.0000476531.84848.dd.
Article
Google Scholar
Hottenrott L, Ketelhut S, Hottenrott K. Commentary: vagal tank theory: the three Rs of cardiac vagal control functioning - resting, reactivity, and recovery. Front Neurosci. 2019;13:1300. https://doi.org/10.3389/fnins.2019.01300.
Article
PubMed
PubMed Central
Google Scholar
Quintana DS. Statistical considerations for reporting and planning heart rate variability case-control studies. Psychophysiology. 2017;54(3):344–9. https://doi.org/10.1111/psyp.12798.
Article
PubMed
Google Scholar
Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Front Psychol. 2017;8:213. https://doi.org/10.3389/fpsyg.2017.00213.
Article
PubMed
PubMed Central
Google Scholar
Shen T-W, Wen H-J. Aerobic exercise affects T-wave alternans and heart rate variability in postmenopausal women. Int J Sports Med. 2013;34(12):1099–105. https://doi.org/10.1055/s-0033-1343408.
Article
PubMed
Google Scholar
Hautala AJ, Kiviniemi AM, Tulppo MP. Individual responses to aerobic exercise: the role of the autonomic nervous system. Neurosci Biobehav Rev. 2009;33(2):107–15. https://doi.org/10.1016/j.neubiorev.2008.04.009.
Article
PubMed
Google Scholar
Kemp AH, Quintana DS, Felmingham KL, Matthews S, Jelinek HF. Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, unmedicated patients: implications for cardiovascular risk. PLoS One. 2012;7(2):e30777. https://doi.org/10.1371/journal.pone.0030777.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papaioannou V, Pnevmatikos I. Heart rate variability: a potential tool for monitoring immunomodulatory effects of parenteral fish oil feeding in patients with Sepsis. Nutr Metab Insights. 2019;12:1178638819847486. https://doi.org/10.1177/1178638819847486.
Article
PubMed
PubMed Central
Google Scholar
Herzig D, Asatryan B, Brugger N, Eser P, Wilhelm M. The association between endurance training and heart rate variability: the confounding role of heart rate. Front Physiol. 2018;9:756. https://doi.org/10.3389/fphys.2018.00756.
Article
PubMed
PubMed Central
Google Scholar
https://doi.org/10.1007/s00421-011-2079-9