Sun Z. Aging, arterial stiffness, and hypertension. Hypertension. 2015;65(2):252–6. https://doi.org/10.1161/HYPERTENSIONAHA.114.03617.
Article
CAS
PubMed
Google Scholar
Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. J Neurol Sci. 1988;84(2):275–94. https://doi.org/10.1016/0022-510X(88)90132-3.
Article
CAS
PubMed
Google Scholar
Metter EJ, Conwit R, Tobin J, Fozard JL. Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol Ser A Biol Med Sci. 1997;52(5):B267–76. https://doi.org/10.1093/gerona/52A.5.B267.
Article
CAS
Google Scholar
Arai H. Aging and homeostasis. Prevention and treatment of sarcopenia and frailty. Clinical calcium. 2017;27(7):1007–11 CliCa170710071011.
CAS
PubMed
Google Scholar
Marques A, Queirós C. Frailty, sarcopenia and falls. In: Fragility Fracture Nursing: Springer; 2018. p. 15–26.
Book
Google Scholar
Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):86–99. https://doi.org/10.1002/jcsm.12783.
Article
PubMed
Google Scholar
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.
Article
PubMed
Google Scholar
Chen L-K, Liu L-K, Woo J, Assantachai P, Auyeung T-W, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025.
Article
PubMed
Google Scholar
Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–5. https://doi.org/10.1111/j.1532-5415.2004.52014.x.
Article
PubMed
Google Scholar
Yang J. Enhanced skeletal muscle for effective glucose homeostasis. Prog Mol Biol Transl Sci. 2014;121:133–63. https://doi.org/10.1016/B978-0-12-800101-1.00005-3.
Article
CAS
PubMed
Google Scholar
Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 2016;23(6):1034–47. https://doi.org/10.1016/j.cmet.2016.05.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willoughby D, Medicine ACoS: resistance training and the older adult. ACSM Current Comment. In.; 2015.
Google Scholar
Lambert CP, Evans WJ. Adaptations to aerobic and resistance exercise in the elderly. Rev Endocr Metab Disord. 2005;6(2):137–43. https://doi.org/10.1007/s11154-005-6726-5.
Article
PubMed
Google Scholar
Guizelini PC, de Aguiar RA, Denadai BS, Caputo F, Greco CC. Effect of resistance training on muscle strength and rate of force development in healthy older adults: a systematic review and meta-analysis. Exp Gerontol. 2018;102:51–8. https://doi.org/10.1016/j.exger.2017.11.020.
Article
PubMed
Google Scholar
Harridge SD. Plasticity of human skeletal muscle: gene expression to in vivo function. Exp Physiol. 2007;92(5):783–97. https://doi.org/10.1113/expphysiol.2006.036525.
Article
CAS
PubMed
Google Scholar
Louis E, Raue U, Yang Y, Jemiolo B, Trappe S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol. 2007;103(5):1744–51. https://doi.org/10.1152/japplphysiol.00679.2007.
Article
CAS
PubMed
Google Scholar
Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012;113(1):71–7. https://doi.org/10.1152/japplphysiol.00307.2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol. 2016;121(1):129–38. https://doi.org/10.1152/japplphysiol.00154.2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1435–45. https://doi.org/10.1249/mss.0b013e3180616aa2.
Article
PubMed
Google Scholar
Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, et al. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle. 2011;1(1):11. https://doi.org/10.1186/2044-5040-1-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guillet C, Prod’homme M, Balage M, Gachon P, Giraudet C, Morin L, et al. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J. 2004;18(13):1586–7. https://doi.org/10.1096/fj.03-1341fje.
Article
CAS
PubMed
Google Scholar
Markofski MM, Dickinson JM, Drummond MJ, Fry CS, Fujita S, Gundermann DM, et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol. 2015;65:1–7. https://doi.org/10.1016/j.exger.2015.02.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joseph GA, Wang SX, Jacobs CE, Zhou W, Kimble GC, Herman WT, et al. Partial inhibition of mTORC1 in aged rats counteracts the decline in muscle mass and reverses molecular signaling associated with sarcopenia. Mol Cell Biol. 2019;39(19):e00141–19. https://doi.org/10.1128/MCB.00141-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tremblay F, Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway a negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem. 2001;276(41):38052–60. https://doi.org/10.1074/jbc.M106703200.
Article
CAS
PubMed
Google Scholar
Kumar V, Atherton PJ, Selby A, Rankin D, Williams J, Smith K, et al. Muscle protein synthetic responses to exercise: effects of age, volume, and intensity. J Gerontol A Biomed Sci Med Sci. 2012;67(11):1170–7. https://doi.org/10.1093/gerona/gls141.
Article
CAS
Google Scholar
Stutts WC. Physical activity determinants in adults: perceived benefits, barriers, and self efficacy. AAOHN J. 2002;50(11):499–507. https://doi.org/10.1177/216507990205001106.
Article
PubMed
Google Scholar
Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;103(3):903–10. https://doi.org/10.1152/japplphysiol.00195.2007.
Article
CAS
PubMed
Google Scholar
Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol. 2010;108(5):1199–209. https://doi.org/10.1152/japplphysiol.01266.2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Souza TMF, Libardi CA, Cavaglieri CR, Gáspari AF, Brunelli DT, de Souza GV, et al. Concurrent training with blood flow restriction does not decrease inflammatory markers. Int J Sports Med. 2018;40(01):29–36. https://doi.org/10.1055/s-0043-119222.
Article
Google Scholar
Karabulut M, Abe T, Sato Y, Bemben MG. The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol. 2010;108(1):147–55. https://doi.org/10.1007/s00421-009-1204-5.
Article
PubMed
Google Scholar
Libardi C, Chacon-Mikahil M, Cavaglieri C, Tricoli V, Roschel H, Vechin F, et al. Effect of concurrent training with blood flow restriction in the elderly. Int J Sports Med. 2015;36(05):395–9. https://doi.org/10.1055/s-0034-1390496.
Article
CAS
PubMed
Google Scholar
Sedghi SS. Effect of combined aerobic and resistance training with blood flow restriction in the elderly women. Sport Sci Pract Asp. 2017;14(1).
Sato Y. The history and future of KAATSU training. Int J KAATSU Train Res. 2005;1(1):1–5. https://doi.org/10.3806/ijktr.1.1.
Article
Google Scholar
Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):2035–9. https://doi.org/10.1097/00005768-200012000-00011.
Article
CAS
PubMed
Google Scholar
Kubota A, Sakuraba K, Koh S, Ogura Y, Tamura Y. Blood flow restriction by low compressive force prevents disuse muscular weakness. J Sci Med Sport. 2011;14(2):95–9. https://doi.org/10.1016/j.jsams.2010.08.007.
Article
PubMed
Google Scholar
Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc. 2008;40(3):529–34. https://doi.org/10.1249/MSS.0b013e31815ddac6.
Article
PubMed
Google Scholar
Barbalho M, Rocha AC, Seus TL, Raiol R, Del Vecchio FB, Coswig VS. Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial. Clin Rehabil. 2019;33(2):233–40. https://doi.org/10.1177/0269215518801440.
Article
PubMed
Google Scholar
Patterson SD, Leggate M, Nimmo MA, Ferguson RA. Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur J Appl Physiol. 2013;113(3):713–9. https://doi.org/10.1007/s00421-012-2479-5.
Article
CAS
PubMed
Google Scholar
Welle S. Growth hormone and insulin-like growth factor-I as anabolic agents. Curr Opin Clin Nutr Metab Care. 1998;1(3):257–62. https://doi.org/10.1097/00075197-199805000-00004.
Article
CAS
PubMed
Google Scholar
Giannoulis MG, Jackson N, Shojaee-Moradie F, Nair KS, Sonksen PH, Martin FC, et al. The effects of growth hormone and/or testosterone on whole body protein kinetics and skeletal muscle gene expression in healthy elderly men: a randomized controlled trial. J Clin Endocrinol Metab. 2008;93(8):3066–74. https://doi.org/10.1210/jc.2007-2695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brill KT, Weltman AL, Gentili A, Patrie JT, Fryburg DA, Hanks JB, et al. Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men. J Clin Endocrinol Metab. 2002;87(12):5649–57. https://doi.org/10.1210/jc.2002-020098.
Article
CAS
PubMed
Google Scholar
Pinto RR, Karabulut M, Poton R, Polito MD. Acute resistance exercise with blood flow restriction in elderly hypertensive women: haemodynamic, rating of perceived exertion and blood lactate. Clin Physiol Funct Imaging. 2018;38(1):17–24. https://doi.org/10.1111/cpf.12376.
Article
CAS
PubMed
Google Scholar
Staunton CA, May AK, Brandner CR, Warmington SA. Haemodynamics of aerobic and resistance blood flow restriction exercise in young and older adults. Eur J Appl Physiol. 2015;115(11):2293–302. https://doi.org/10.1007/s00421-015-3213-x.
Article
PubMed
Google Scholar
de Freitas MC, Gerosa-Neto J, Zanchi NE, Lira FS, Rossi FE. Role of metabolic stress for enhancing muscle adaptations: practical applications. World J Methodol. 2017;7(2):46–54. https://doi.org/10.5662/wjm.v7.i2.46.
Article
PubMed
PubMed Central
Google Scholar
Grosicki GJ, Barrett B, Englund D, Liu C, Travison T, Cederholm T, et al. Circulating Interleukin-6 is associated with skeletal muscle strength, quality, and functional adaptation with exercise training in mobility-limited older adults. J Frailty Aging. 2020;9(1):57–63. https://doi.org/10.14283/jfa.2019.30.
Article
CAS
PubMed
Google Scholar
Frontera WR, Meredith CN, O'Reilly KP, Knuttgen HG, Evans WJ. Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol. 1988;64(3):1038–44. https://doi.org/10.1152/jappl.1988.64.3.1038.
Article
CAS
PubMed
Google Scholar
Rantanen T, Avela J. Leg extension power and walking speed in very old people living independently. J Gerontol Ser A Biol Med Sci. 1997;52(4):M225–31. https://doi.org/10.1093/gerona/52A.4.M225.
Article
CAS
Google Scholar
Byrne C, Faure C, Keene DJ, Lamb SE. Ageing, muscle power and physical function: a systematic review and implications for pragmatic training interventions. Sports Med. 2016;46(9):1311–32. https://doi.org/10.1007/s40279-016-0489-x.
Article
PubMed
Google Scholar
Dipietro L, Campbell WW, Buchner DM, Erickson KI, Powell KE, Bloodgood B, et al. Physical activity, injurious falls, and physical function in aging: an umbrella review. Med Sci Sports Exerc. 2019;51(6):1303–13. https://doi.org/10.1249/MSS.0000000000001942.
Article
PubMed
PubMed Central
Google Scholar
Yasuda T, Fukumura K, Fukuda T, Uchida Y, Iida H, Meguro M, et al. Muscle size and arterial stiffness after blood flow-restricted low-intensity resistance training in older adults. Scand J Med Sci Sports. 2014;24(5):799–806. https://doi.org/10.1111/sms.12087.
Article
CAS
PubMed
Google Scholar
Yasuda T, Fukumura K, Uchida Y, Koshi H, Iida H, Masamune K, et al. Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults. J Gerontol A Biomed Sci Med Sci. 2015;70(8):950–8. https://doi.org/10.1093/gerona/glu084.
Article
Google Scholar
Vechin FC, Libardi CA, Conceição MS, Damas FR, Lixandrão ME, Berton RP, et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res. 2015;29(4):1071–6. https://doi.org/10.1519/JSC.0000000000000703.
Article
PubMed
Google Scholar
Vechin FC, Libardi CA, Conceição MS, Damas F, Cavaglieri CR, Chacon-Mikahil MPT, et al. Low-intensity resistance training with partial blood flow restriction and high-intensity resistance training induce similar changes in skeletal muscle transcriptome in elderly humans. Appl Physiol Nutr Metab. 2019;44(2):216–20. https://doi.org/10.1139/apnm-2018-0146.
Article
CAS
PubMed
Google Scholar
Cook SB, LaRoche DP, Villa MR, Barile H, Manini TM. Blood flow restricted resistance training in older adults at risk of mobility limitations. Exp Gerontol. 2017;99:138–45. https://doi.org/10.1016/j.exger.2017.10.004.
Article
PubMed
PubMed Central
Google Scholar
Thiebaud RS, Loenneke JP, Fahs CA, Rossow LM, Kim D, Abe T, et al. The effects of elastic band resistance training combined with blood flow restriction on strength, total bone-free lean body mass and muscle thickness in postmenopausal women. Clin Physiol Funct Imaging. 2013;33(5):344–52. https://doi.org/10.1111/cpf.12033.
Article
PubMed
Google Scholar
Yasuda T, Fukumura K, Tomaru T, Nakajima T. Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women. Oncotarget. 2016;7(23):33595–607. https://doi.org/10.18632/oncotarget.9564.
Article
PubMed
PubMed Central
Google Scholar
Cezar MA, De Sá CA, VdS C, Copatti SL, GAGd S, MEdS G. Effects of exercise training with blood flow restriction on blood pressure in medicated hypertensive patients. Motriz Revista de Educação Física. 2016;22(2):9–17. https://doi.org/10.1590/S1980-6574201600020002.
Article
Google Scholar
Harber MP, Konopka AR, Undem MK, Hinkley JM, Minchev K, Kaminsky LA, et al. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. J Appl Physiol. 2012;113(9):1495–504. https://doi.org/10.1152/japplphysiol.00786.2012.
Article
PubMed
PubMed Central
Google Scholar
Le Bacquer O, Combe K, Patrac V, Ingram B, Combaret L, Dardevet D, et al. 4E-BP1 and 4E-BP2 double knockout mice are protected from aging-associated sarcopenia. J Cachexia Sarcopenia Muscle. 2019;10(3):696–709. https://doi.org/10.1002/jcsm.12412.
Article
PubMed
PubMed Central
Google Scholar
Gundermann DM, Fry CS, Dickinson JM, Walker DK, Timmerman KL, Drummond MJ, et al. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. J Appl Physiol. 2012;112(9):1520–8. https://doi.org/10.1152/japplphysiol.01267.2011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takada S, Okita K, Suga T, Omokawa M, Kadoguchi T, Sato T, et al. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol. 2012;113(2):199–205. https://doi.org/10.1152/japplphysiol.00149.2012.
Article
CAS
PubMed
Google Scholar
Loenneke JP, Pujol TJ. The use of occlusion training to produce muscle hypertrophy. Strength & Conditioning Journal. 2009;31(3):77–84. https://doi.org/10.1519/SSC.0b013e3181a5a352.
Article
Google Scholar
Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94. https://doi.org/10.1007/s40279-013-0017-1.
Article
PubMed
Google Scholar
Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, et al. Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2010;108(6):1563–7. https://doi.org/10.1152/japplphysiol.00504.2009.
Article
PubMed
Google Scholar
Goto K, Ishii N, Kizuka T, Takamatsu K. The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc. 2005;37(6):955–63.
CAS
PubMed
Google Scholar
Oishi Y, Tsukamoto H, Yokokawa T, Hirotsu K, Shimazu M, Uchida K, et al. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. J Appl Physiol. 2015;118(6):742–9. https://doi.org/10.1152/japplphysiol.00054.2014.
Article
CAS
PubMed
Google Scholar
Fahs CA, Rossow LM, Thiebaud RS, Loenneke JP, Kim D, Abe T, et al. Vascular adaptations to low-load resistance training with and without blood flow restriction. Eur J Appl Physiol. 2014;114(4):715–24. https://doi.org/10.1007/s00421-013-2808-3.
Article
PubMed
Google Scholar
Ozaki H, Sakamaki M, Yasuda T, Fujita S, Ogasawara R, Sugaya M, et al. Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants. J Gerontol A Biomed Sci Med Sci. 2011;66(3):257–63. https://doi.org/10.1093/gerona/glq182.
Article
Google Scholar
Ozaki H, Miyachi M, Nakajima T, Abe T. Effects of 10 weeks walk training with leg blood flow reduction on carotid arterial compliance and muscle size in the elderly adults. Angiology. 2011;62(1):81–6. https://doi.org/10.1177/0003319710375942.
Article
PubMed
Google Scholar
Iida H, Nakajima T, Kurano M, Yasuda T, Sakamaki M, Sato Y, et al. Effects of walking with blood flow restriction on limb venous compliance in elderly subjects. Clin Physiol Funct Imaging. 2011;31(6):472–6. https://doi.org/10.1111/j.1475-097X.2011.01044.x.
Article
PubMed
Google Scholar
Ramos-Campo DJ, Scott BR, Alcaraz PE, Rubio-Arias JA. The efficacy of resistance training in hypoxia to enhance strength and muscle growth: a systematic review and meta-analysis. Eur J Sport Sci. 2018;18(1):92–103. https://doi.org/10.1080/17461391.2017.1388850.
Article
PubMed
Google Scholar
Barjaste A, Mirzaei B, Rahmani-nia F, Haghniyaz R, Brocherie F. Concomitant aerobic-and hypertrophy-related skeletal muscle cell signaling following blood flow-restricted walking. Sci Sports. 2020;36(2):e51–8. https://doi.org/10.1016/j.scispo.2020.03.006.
Article
Google Scholar
Yang X, Yang S, Wang C, Kuang S. The hypoxia-inducible factors HIF1α and HIF2α are dispensable for embryonic muscle development but essential for postnatal muscle regeneration. J Biol Chem. 2017;292(14):5981–91. https://doi.org/10.1074/jbc.M116.756312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimizu R, Hotta K, Yamamoto S, Matsumoto T, Kamiya K, Kato M, et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur J Appl Physiol. 2016;116(4):749–57. https://doi.org/10.1007/s00421-016-3328-8.
Article
CAS
PubMed
Google Scholar
Huey KA. Potential roles of vascular endothelial growth factor during skeletal muscle hypertrophy. Exerc Sport Sci Rev. 2018;46(3):195–202. https://doi.org/10.1249/JES.0000000000000152.
Article
PubMed
Google Scholar
Kirchengast S, Huber J. Gender and age differences in lean soft tissue mass and sarcopenia among healthy elderly. Anthropol Anz. 2009;67(2):139–51. https://doi.org/10.1127/0003-5548/2009/0018.
Article
PubMed
Google Scholar
Cherin P, Voronska E, Fraoucene N, de Jaeger C. Prevalence of sarcopenia among healthy ambulatory subjects: the sarcopenia begins from 45 years. Aging Clin Exp Res. 2014;26(2):137–46. https://doi.org/10.1007/s40520-013-0132-8.
Article
PubMed
Google Scholar
Vina J, Sastre J, Pallardo F, Gambini J, Borras C. Role of mitochondrial oxidative stress to explain the different longevity between genders. Protective effect of estrogens. Free Radic Res. 2006;40(12):1359–65. https://doi.org/10.1080/10715760600952851.
Article
CAS
PubMed
Google Scholar
Cooper R, Mishra G, Clennell S, Guralnik J, Kuh D: Menopausal status and physical performance in midlife: findings from a British birth cohort study. Menopause (New York, NY) 2008, 15(6):1079.
Google Scholar
Carville SF, Rutherford OM, Newham DJ. Power output, isometric strength and steadiness in the leg muscles of pre-and postmenopausal women; the effects of hormone replacement therapy. Eur J Appl Physiol. 2006;96(3):292–8. https://doi.org/10.1007/s00421-005-0078-4.
Article
CAS
PubMed
Google Scholar
Hansen M, Skovgaard D, Reitelseder S, Holm L, Langbjerg H, Kjaer M. Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women. J Gerontol A Biomed Sci Med Sci. 2012;67(10):1005–13. https://doi.org/10.1093/gerona/gls007.
Article
CAS
Google Scholar
Iannuzzi-Sucich M, Prestwood KM, Kenny AM. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J Gerontol Ser A Biol Med Sci. 2002;57(12):M772–7. https://doi.org/10.1093/gerona/57.12.M772.
Article
Google Scholar
van den Beld AW, de Jong FH, Grobbee DE, Pols HA, Lamberts SW. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab. 2000;85(9):3276–82. https://doi.org/10.1210/jcem.85.9.6825.
Article
PubMed
Google Scholar
Sih R, Morley JE, Kaiser FE, Perry HM III, Patrick P, Ross C. Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab. 1997;82(6):1661–7. https://doi.org/10.1210/jcem.82.6.3988.
Article
CAS
PubMed
Google Scholar
Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J Gerontol Ser A Biol Med Sci. 2001;56(5):M266–72. https://doi.org/10.1093/gerona/56.5.M266.
Article
CAS
Google Scholar
Häkkinen K, Pakarinen A. Muscle strength and serum testosterone, cortisol and SHBG concentrations in middle-aged and elderly men and women. Acta Physiol Scand. 1993;148(2):199–207. https://doi.org/10.1111/j.1748-1716.1993.tb09549.x.
Article
PubMed
Google Scholar
Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS, Abe T, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2012;112(8):2903–12. https://doi.org/10.1007/s00421-011-2266-8.
Article
PubMed
Google Scholar
Rossow LM, Fahs CA, Loenneke JP, Thiebaud RS, Sherk VD, Abe T, et al. Cardiovascular and perceptual responses to blood-flow-restricted resistance exercise with differing restrictive cuffs. Clin Physiol Funct Imaging. 2012;32(5):331–7. https://doi.org/10.1111/j.1475-097X.2012.01131.x.
Article
PubMed
Google Scholar
Patterson SD, Hughes L, Head P, Warmington S, Brandner C. Blood flow restriction training: a novel approach to augment clinical rehabilitation: how to do it. In.: BMJ publishing group ltd and British Association of Sport and Exercise. Medicine. 2017;51(23):1648–9. https://doi.org/10.1136/bjsports-2017-097738.
Article
Google Scholar
McEwen JA, Owens JG, Jeyasurya J. Why is it crucial to use personalized occlusion pressures in blood flow restriction (BFR) rehabilitation? J Med Biol Eng. 2019;39(2):173–7. https://doi.org/10.1007/s40846-018-0397-7.
Article
Google Scholar
Ilett MJ, Rantalainen T, Keske MA, May AK, Warmington SA. The effects of restriction pressures on the acute responses to blood flow restriction exercise. Front Physiol. 2019;10:1018. https://doi.org/10.3389/fphys.2019.01018.
Article
PubMed
PubMed Central
Google Scholar
Araújo JP, Silva ED, Silva JC, Souza TS, Lima EO, Guerra I, et al. The acute effect of resistance exercise with blood flow restriction with hemodynamic variables on hypertensive subjects. J Hum Kinet. 2014;43(1):79–85. https://doi.org/10.2478/hukin-2014-0092.
Article
PubMed
PubMed Central
Google Scholar
Brand C, Griebeler LC, Roth MA, Mello FF, Barros TVP, Neu LD. Efeito do treinamento resistido em parâmetros cardiovasculares de adultos normotensos e hipertensos. Rev Bras Cardiol. 2013;26(6):435–41.
Google Scholar
Pescatello LS, Fargo AE, Leach CN Jr, Scherzer HH. Short-term effect of dynamic exercise on arterial blood pressure. Circulation. 1991;83(5):1557–61. https://doi.org/10.1161/01.CIR.83.5.1557.
Article
CAS
PubMed
Google Scholar
Costa JBY, Gerage AM, Gonçalves CGS, Pina FLC, Polito MD. Influence of the training status on the blood pressure behavior after a resistance training session in hypertensive older females. Rev Bras Med Esporte. 2010;16(2):103–6. https://doi.org/10.1590/S1517-86922010000200005.
Article
Google Scholar
Chulvi-Medrano I. Resistance training with blood flow restriction and hypertensive subjects. J Hum Kinet. 2015;46(1):7–8. https://doi.org/10.1515/hukin-2015-0028.
Article
PubMed
PubMed Central
Google Scholar
Loenneke J, Wilson J, Wilson G, Pujol T, Bemben M. Potential safety issues with blood flow restriction training. Scand J Med Sci Sports. 2011;21(4):510–8. https://doi.org/10.1111/j.1600-0838.2010.01290.x.
Article
CAS
PubMed
Google Scholar
Nakajima T, Kurano M, Iida H, Takano H, Oonuma H, Morita T, et al. Use and safety of KAATSU training: results of a national survey. Int J KAATSU Train Res. 2006;2(1):5–13. https://doi.org/10.3806/ijktr.2.5.
Article
Google Scholar
Wong ML, Formiga MF, Owens J, Asken T, Cahalin LP. Safety of blood flow restricted exercise in hypertension: a meta-analysis and systematic review with potential applications in orthopedic care. Tech Orthop. 2018;33(2):80–8. https://doi.org/10.1097/BTO.0000000000000288.
Article
Google Scholar
Harper SA, Roberts LM, Layne AS, Jaeger BC, Gardner AK, Sibille KT, et al. Blood-flow restriction resistance exercise for older adults with knee osteoarthritis: a pilot randomized clinical trial. J Clin Med. 2019;8(2):265. https://doi.org/10.3390/jcm8020265.
Article
CAS
PubMed Central
Google Scholar
Pinto RR, Polito MD. Haemodynamic responses during resistance exercise with blood flow restriction in hypertensive subjects. Clin Physiol Funct Imaging. 2016;36(5):407–13. https://doi.org/10.1111/cpf.12245.
Article
PubMed
Google Scholar
Lopes KG, Bottino DA, Farinatti P, MdGC d S, Maranhão PA, CMS d A, et al. Strength training with blood flow restriction–a novel therapeutic approach for older adults with sarcopenia? A Case Report. Clin Interv Aging. 2019;14:1461–9. https://doi.org/10.2147/CIA.S206522.
Article
PubMed
PubMed Central
Google Scholar
Patterson SD, Ferguson RA. Enhancing strength and postocclusive calf blood flow in older people with training with blood-flow restriction. J Aging Phys Act. 2011;19(3):201–13. https://doi.org/10.1123/japa.19.3.201.
Article
PubMed
Google Scholar
Ruaro MF, Santana JO, Gusmão N, De França E, Carvalho BN, Farinazo KB, et al. Effects of strength training with and without blood flow restriction on quality of life in the elderly. J Phys Educ Sport. 2019;19:787–94.
Google Scholar