Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc. 2011;86:876–84. https://doi.org/10.4065/mcp.2011.0252.
Article
PubMed
PubMed Central
Google Scholar
Hauer K, Becker C, Lindemann U, Beyer N. Effectiveness of physical training on motor performance and fall prevention in cognitively impaired older persons: a systematic review. Am J Phys Med Rehabil. 2006;85:847–57. https://doi.org/10.1097/01.phm.0000228539.99682.32.
Article
CAS
PubMed
Google Scholar
Brett L, Traynor V, Stapley P. Effects of physical exercise on health and well-being of individuals living with a dementia in nursing homes: a systematic review. J Am Med Dir Assoc. 2016;17:104–16. https://doi.org/10.1016/j.jamda.2015.08.016.
Article
PubMed
Google Scholar
Gonçalves A-C, Cruz J, Marques A, Demain S, Samuel D. Evaluating physical activity in dementia: a systematic review of outcomes to inform the development of a core outcome set. Age Ageing. 2018;47:34–41. https://doi.org/10.1093/ageing/afx135.
Article
PubMed
Google Scholar
Wittwer JE, Webster KE, Hill K. Reproducibility of gait variability measures in people with Alzheimer’s disease. Gait Posture. 2013;38:507–10. https://doi.org/10.1016/j.gaitpost.2013.01.021.
Article
PubMed
Google Scholar
Ries JD, Echternach JL, Nof L, Gagnon BM. Test-retest reliability and minimal detectable change scores for the timed “up & go” test, the six-minute walk test, and gait speed in people with Alzheimer disease. Phys Ther. 2009;89:569–79. https://doi.org/10.2522/ptj.20080258.
Article
PubMed
Google Scholar
Fox B, Henwood T, Keogh J, Neville C. Psychometric viability of measures of functional performance commonly used for people with dementia: a systematic review of measurement properties. JBI Database System Rev Implement Rep. 2016;14:115–71. https://doi.org/10.11124/JBISRIR-2016-003064.
Article
PubMed
Google Scholar
Baddeley A, Logie R, Bressi S, Della Sala S, Spinnler H. Dementia and working memory. Quart J Exper Psychol Sect A. 1986;38:603–18. https://doi.org/10.1080/14640748608401616.
Article
CAS
Google Scholar
Perry RJ, Hodges JR. Attention and executive deficits in Alzheimer’s disease. A critical review. Brain. 1999;122(Pt 3):383–404. https://doi.org/10.1093/brain/122.3.383.
Article
PubMed
Google Scholar
Allan LM, Ballard CG, Burn DJ, Kenny RA. Prevalence and severity of gait disorders in Alzheimer’s and non-Alzheimer’s dementias. J Am Geriatr Soc. 2005;53:1681–7. https://doi.org/10.1111/j.1532-5415.2005.53552.x.
Article
PubMed
Google Scholar
Manckoundia P, Mourey F, Pfitzenmeyer P, Papaxanthis C. Comparison of motor strategies in sit-to-stand and back-to-sit motions between healthy and Alzheimer’s disease elderly subjects. Neuroscience. 2006;137:385–92. https://doi.org/10.1016/j.neuroscience.2005.08.079.
Article
CAS
PubMed
Google Scholar
van Iersel MB, Hoefsloot W, Munneke M, Bloem BR, Olde Rikkert MGM. Systematic review of quantitative clinical gait analysis in patients with dementia. Z Gerontol Geriatr. 2004;37:27–32. https://doi.org/10.1007/s00391-004-0176-7.
Article
PubMed
Google Scholar
Bossers WJR, van der Woude LHV, Boersma F, Scherder EJA, van Heuvelen MJG. Recommended measures for the assessment of cognitive and physical performance in older patients with dementia: a systematic review. Dement Geriatr Cogn Dis Extra. 2012;2:589–609. https://doi.org/10.1159/000345038.
Article
PubMed
PubMed Central
Google Scholar
Muir-Hunter SW, Graham L, Montero OM. Reliability of the Berg balance scale as a clinical measure of balance in community-dwelling older adults with mild to moderate Alzheimer disease: a pilot study. Physiother Can. 2015;67:255–62. https://doi.org/10.3138/ptc.2014-32.
Article
PubMed
PubMed Central
Google Scholar
Telenius EW, Engedal K, Bergland A. Inter-rater reliability of the Berg balance scale, 30 s chair stand test and 6 m walking test, and construct validity of the Berg balance scale in nursing home residents with mild-to-moderate dementia. BMJ Open. 2015;5:e008321. https://doi.org/10.1136/bmjopen-2015-008321.
Article
PubMed
PubMed Central
Google Scholar
Hauer K, Oster P. Measuring functional performance in persons with dementia. J Am Geriatr Soc. 2008;56:949–50. https://doi.org/10.1111/j.1532-5415.2008.01649.x.
Article
PubMed
Google Scholar
Blankevoort CG, van Heuvelen MJG, Scherder EJA. Reliability of six physical performance tests in older people with dementia. Phys Ther. 2013;93:69–78. https://doi.org/10.2522/ptj.20110164.
Article
PubMed
Google Scholar
Phillips CD, Chu CW, Morris JN, Hawes C. Effects of cognitive impairment on the reliability of geriatric assessments in nursing homes. J Am Geriatr Soc. 1993;41:136–42. https://doi.org/10.1111/j.1532-5415.1993.tb02047.x.
Article
CAS
PubMed
Google Scholar
Cohen-Mansfield J. Heterogeneity in dementia: challenges and opportunities. Alzheimer Dis Assoc Disord. 2000;14:60–3.
Article
CAS
PubMed
Google Scholar
Valkanova V, Ebmeier KP. What can gait tell us about dementia? Review of epidemiological and neuropsychological evidence. Gait Posture. 2017;53:215–23. https://doi.org/10.1016/j.gaitpost.2017.01.024.
Article
PubMed
Google Scholar
van Iersel MB, Benraad CEM, Olde Rikkert MGM. Validity and reliability of quantitative gait analysis in geriatric patients with and without dementia. J Am Geriatr Soc. 2007;55:632–4. https://doi.org/10.1111/j.1532-5415.2007.01130.x.
Article
PubMed
Google Scholar
Trautwein S, Barisch-Fritz B, Scharpf A, Bossers W, Meinzer M, Steib S, et al. Recommendations for assessing motor performance in individuals with dementia: suggestions of an expert panel – a qualitative approach. Eur Rev Aging Phys Act. 2019. https://doi.org/10.1186/s11556-019-0212-7.
Lee H-S, Park S-W. The reliability of balance, gait, and muscle strength test for the elderly with dementia: a systematic review. KSPM. 2017;12:49–58. https://doi.org/10.13066/kspm.2017.12.3.49.
Article
CAS
Google Scholar
McGough EL, Lin S-Y, Belza B, Becofsky KM, Jones DL, Liu M, et al. A scoping review of physical performance outcome measures used in exercise interventions for older adults with Alzheimer disease and related dementias. J Geriatr Phys Ther. 2019;42:28–47. https://doi.org/10.1519/JPT.0000000000000159.
Article
PubMed
Google Scholar
Lundin-Olsson L, Nyberg L, Gustafson Y. Attention, frailty, and falls: the effect of a manual task on basic mobility. J Am Geriatr Soc. 1998;46:758–61. https://doi.org/10.1111/j.1532-5415.1998.tb03813.x.
Article
CAS
PubMed
Google Scholar
McGough EL, Logsdon RG, Kelly VE, Teri L. Functional mobility limitations and falls in assisted living residents with dementia: physical performance assessment and quantitative gait analysis. J Geriatr Phys Ther. 2013;36:78–86. https://doi.org/10.1519/JPT.0b013e318268de7f.
Article
PubMed
Google Scholar
Beauchet O, Allali G, Berrut G, Hommet C, Dubost V, Assal F. Gait analysis in demented subjects: interests and perspectives. Neuropsychiatr Dis Treat. 2008;4:155–60.
Article
PubMed
PubMed Central
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097.
Article
PubMed
PubMed Central
Google Scholar
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100. https://doi.org/10.1371/journal.pmed.1000100.
Article
PubMed
PubMed Central
Google Scholar
Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63:737–45. https://doi.org/10.1016/j.jclinepi.2010.02.006.
Article
PubMed
Google Scholar
Bruton A, Conway JH, Holgate ST. Reliability: what is it, and how is it measured? Physiotherapy. 2000;86:94–9. https://doi.org/10.1016/S0031-9406(05)61211-4.
Article
Google Scholar
Carter R, Lubinsky J, Domholdt E. Rehabilitation research: principles and applications. 4th ed. St. Louis, Missouri: Elsevier Health Sciences; 2013.
Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–31.
CAS
PubMed
PubMed Central
Google Scholar
Thalheimer W, Cook S. How to calculate effect sizes from published research: a simplified methodology; 2002.
Google Scholar
Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: L. Erlbaum Associates; 1988.
Google Scholar
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. https://doi.org/10.1016/0022-3956(75)90026-6.
Article
CAS
PubMed
Google Scholar
Mokkink LB, de Vet HCW, Prinsen CAC, Patrick DL, Alonso J, Bouter LM, et al. COSMIN risk of bias checklist for systematic reviews of patient-reported outcome measures. Qual Life Res. 2018;27:1171–9. https://doi.org/10.1007/s11136-017-1765-4.
Article
CAS
PubMed
Google Scholar
Prinsen CAC, Mokkink LB, Bouter LM, Alonso J, Patrick DL, de Vet HCW, et al. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual Life Res. 2018;27:1147–57. https://doi.org/10.1007/s11136-018-1798-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 3rd ed. Upper Saddle River: Pearson/Prentice Hall; 2015.
Google Scholar
Schwenk M, Gogulla S, Englert S, Czempik A, Hauer K. Test-retest reliability and minimal detectable change of repeated sit-to-stand analysis using one body fixed sensor in geriatric patients. Physiol Meas. 2012;33:1931–46. https://doi.org/10.1088/0967-3334/33/11/1931.
Article
CAS
PubMed
Google Scholar
Mokkink LB, Prinsen CA, Patrick DL, Alonso J, Bouter LM, de Vet HC, et al. COSMIN methodology for systematic reviews of patient-reported outcome measures (PROMs): user manual; 2018.
Google Scholar
Smidt N, van der Windt DA, Assendelft WJ, Mourits AJ, Devillé WL, de Winter AF, et al. Interobserver reproducibility of the assessment of severity of complaints, grip strength, and pressure pain threshold in patients with lateral epicondylitis. Arch Phys Med Rehabil. 2002;83:1145–50. https://doi.org/10.1053/apmr.2002.33728.
Article
PubMed
Google Scholar
Lee HS, Park SW, Chung HK. The Korean version of relative and absolute reliability of gait and balance assessment tools for patients with dementia in day care center and nursing home. J Phys Ther Sci. 2017;29:1934–9. https://doi.org/10.1589/jpts.29.1934.
Article
PubMed
PubMed Central
Google Scholar
Huang S-L, Hsieh C-L, Wu R-M, Tai C-H, Lin C-H, Lu W-S. Minimal detectable change of the timed “up & go” test and the dynamic gait index in people with Parkinson disease. Phys Ther. 2011;91:114–21. https://doi.org/10.2522/ptj.20090126.
Article
PubMed
Google Scholar
Schünemann H, Brożek J, Guyatt G, Oxman A. GRADE handbook for grading quality of evidence and strength of recommendations. Updated October. 2013;2013.
Google Scholar
Forbes D, Forbes SC, Blake CM, Thiessen EJ, Forbes S. Exercise programs for people with dementia. Cochrane Database Syst Rev. 2015:CD006489. https://doi.org/10.1002/14651858.CD006489.pub4.
Feldman HH, Woodward M. The staging and assessment of moderate to severe Alzheimer disease. Neurology. 2005;65:S10–7. https://doi.org/10.1212/WNL.65.6_suppl_3.S10.
Article
Google Scholar
Hogan DB, Bailey P, Carswell A, Clarke B, Cohen C, Forbes D, et al. Management of mild to moderate Alzheimer’s disease and dementia. Alzheimers Dement. 2007;3:355–84. https://doi.org/10.1016/j.jalz.2007.07.006.
Article
CAS
PubMed
Google Scholar
Rossiter-Fornoff JE, Wolf SL, Wolfson LI, Buchner DM. A cross-sectional validation study of the FICSIT common Data Base static balance measures: cooperative studies of intervention techniques. J Gerontol Ser A-Biol Sci Med Sci. 1995;50A:M291–7. https://doi.org/10.1093/gerona/50A.6.M291.
Article
Google Scholar
Bossers WJR, van der Woude LHV, Boersma F, Hortobágyi T, Scherder EJA, van Heuvelen MJG. A 9-week aerobic and strength training program improves cognitive and motor function in patients with dementia: a randomized, controlled trial. Am J Geriatr Psychiatry. 2015;23:1106–16. https://doi.org/10.1016/j.jagp.2014.12.191.
Article
PubMed
Google Scholar
Suttanon P, Hill KD, Dodd KJ, Said CM. Retest reliability of balance and mobility measurements in people with mild to moderate Alzheimer’s disease. Int Psychogeriatr. 2011;23:1152–9. https://doi.org/10.1017/S1041610211000639.
Article
PubMed
Google Scholar
Suttanon P, Hill KD, Said CM, Williams SB, Byrne KN, LoGiudice D, et al. Feasibility, safety and preliminary evidence of the effectiveness of a home-based exercise programme for older people with Alzheimer’s disease: a pilot randomized controlled trial. Clin Rehabil. 2013;27:427–38. https://doi.org/10.1177/0269215512460877.
Article
PubMed
Google Scholar
Wiloth S, Lemke N, Werner C, Hauer K. Validation of a computerized, game-based assessment strategy to measure training effects on motor-cognitive functions in people with dementia. JMIR Ser Games. 2016;4:e12. https://doi.org/10.2196/games.5696.
Article
Google Scholar
Wiloth S, Werner C, Lemke NC, Bauer J, Hauer K. Motor-cognitive effects of a computerized game-based training method in people with dementia: a randomized controlled trial. Aging Ment Health. 2018;22:1124–35. https://doi.org/10.1080/13607863.2017.1348472.
Article
PubMed
Google Scholar
Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of balance. J Gerontol. 1990;45:M192–7. https://doi.org/10.1093/geronj/45.6.M192.
Article
CAS
PubMed
Google Scholar
Arcoverde C, Deslandes A, Moraes H, Almeida C, NBd A, Vasques PE, et al. Treadmill training as an augmentation treatment for Alzheimer’s disease: a pilot randomized controlled study. Arq Neuropsiquiatr. 2014;72:190–6. https://doi.org/10.1590/0004-282X20130231.
Article
PubMed
Google Scholar
Miu D, Szeto S, Mak Y. A randomized controlled trial on the effect of exercise on physical, cognitive, and affective function in dementia subjects. Asian J Gerontol Geriatr. 2008;3:8–16.
Google Scholar
Netz Y, Axelrad S, Argov E. Group physical activity for demented older adults feasibility and effectiveness. Clin Rehabil. 2007;21:977–86. https://doi.org/10.1177/0269215507078318.
Article
PubMed
Google Scholar
Vreugdenhil A, Cannell J, Davies A, Razay G. A community-based exercise programme to improve functional ability in people with Alzheimer’s disease: a randomized controlled trial. Scand J Caring Sci. 2012;26:12–9. https://doi.org/10.1111/j.1471-6712.2011.00895.x.
Article
PubMed
Google Scholar
Hill KD. A new test of dynamic standing balance for stroke patients: reliability, validity and comparison with healthy elderly. Physiother Can. 1996;48:257–62. https://doi.org/10.3138/ptc.48.4.257.
Article
Google Scholar
Wesson J, Clemson L, Brodaty H, Lord S, Taylor M, Gitlin L, et al. A feasibility study and pilot randomised trial of a tailored prevention program to reduce falls in older people with mild dementia. BMC Geriatr. 2013;13:89. https://doi.org/10.1186/1471-2318-13-89.
Article
PubMed
PubMed Central
Google Scholar
Johansson G, Jarnlo G-B. Balance training in 70-year-old women. Physiother Theory Pract. 2009;7:121–5. https://doi.org/10.3109/09593989109106962.
Article
Google Scholar
Bossers WJR, van der Woude LHV, Boersma F, Scherder EJA, van Heuvelen MJG. The Groningen meander walking test: a dynamic walking test for older adults with dementia. Phys Ther. 2014;94:262–72. https://doi.org/10.2522/ptj.20130077.
Article
PubMed
Google Scholar
Berg K. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 1989;41:304–11. https://doi.org/10.3138/ptc.41.6.304.
Article
Google Scholar
Burgener SC, Yang Y, Gilbert R, Marsh-Yant S. The effects of a multimodal intervention on outcomes of persons with early-stage dementia. Am J Alzheimers Dis Other Demen. 2008;23:382–94. https://doi.org/10.1177/1533317508317527.
Article
PubMed
PubMed Central
Google Scholar
Christofoletti G, Oliani MM, Gobbi S, Stella F, Bucken Gobbi LT, Renato CP. A controlled clinical trial on the effects of motor intervention on balance and cognition in institutionalized elderly patients with dementia. Clin Rehabil. 2008;22:618–26. https://doi.org/10.1177/0269215507086239.
Article
PubMed
Google Scholar
Kim M-J, Han C-W, Min K-Y, Cho C-Y, Lee C-W, Ogawa Y, et al. Physical exercise with multicomponent cognitive intervention for older adults with Alzheimer’s disease: a 6-month randomized controlled trial. Dement Geriatr Cogn Dis Extra. 2016;6:222–32. https://doi.org/10.1159/000446508.
Article
PubMed
PubMed Central
Google Scholar
Lam FMH, Liao LR, Kwok TCY, Pang MYC. Effects of adding whole-body vibration to routine day activity program on physical functioning in elderly with mild or moderate dementia: a randomized controlled trial. Int J Geriatr Psychiatry. 2018;33:21–30. https://doi.org/10.1002/gps.4662.
Article
PubMed
Google Scholar
Padala KP, Padala PR, Lensing SY, Dennis RA, Bopp MM, Roberson PK, et al. Home-based exercise program improves balance and fear of falling in community-dwelling older adults with mild Alzheimer’s disease: a pilot study. J Alzheimers Dis. 2017;59:565–74. https://doi.org/10.3233/JAD-170120.
Article
PubMed
Google Scholar
Padala KP, Padala PR, Malloy TR, Geske JA, Dubbert PM, Dennis RA, et al. Wii-fit for improving gait and balance in an assisted living facility: a pilot study. J Aging Res. 2012;2012:597573. https://doi.org/10.1155/2012/597573.
Article
PubMed
PubMed Central
Google Scholar
Telenius EW, Engedal K, Bergland A. Effect of a high-intensity exercise program on physical function and mental health in nursing home residents with dementia: an assessor blinded randomized controlled trial. PLoS One. 2015;10:e0126102. https://doi.org/10.1371/journal.pone.0126102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toots A, Littbrand H, Lindelöf N, Wiklund R, Holmberg H, Nordström P, et al. Effects of a high-intensity functional exercise program on dependence in activities of daily living and balance in older adults with dementia. J Am Geriatr Soc. 2016;64:55–64. https://doi.org/10.1111/jgs.13880.
Article
PubMed
PubMed Central
Google Scholar
Yoon JE, Lee SM, Lim HS, Kim TH, Jeon JK, Mun MH. The effects of cognitive activity combined with active extremity exercise on balance, walking activity, memory level and quality of life of an older adult sample with dementia. J Phys Ther Sci. 2013;25:1601–4. https://doi.org/10.1589/jpts.25.1601.
Article
PubMed
Google Scholar
Dawson N, Judge KS, Gerhart H. Improved functional performance in individuals with dementia after a moderate-intensity home-based exercise program: a randomized controlled trial. J Geriatr Phys Ther. 2019;42:18–27. https://doi.org/10.1519/JPT.0000000000000128.
Article
PubMed
Google Scholar
Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc. 1986;34:119–26. https://doi.org/10.1111/j.1532-5415.1986.tb05480.x.
Article
CAS
PubMed
Google Scholar
Francese T, Sorrell J, Butler FR. The effects of regular exercise on muscle strength and functional abilities of late stage Alzheimer’s residents. Am J Alzheimers Dis Other Demen. 1997;12:122–7. https://doi.org/10.1177/153331759701200305.
Article
Google Scholar
Hauer K, Ullrich P, Dutzi I, Beurskens R, Kern S, Bauer J, et al. Effects of standardized home training in patients with cognitive impairment following geriatric rehabilitation: a randomized controlled pilot study. Gerontology. 2017;63:495–506. https://doi.org/10.1159/000478263.
Article
PubMed
Google Scholar
Hauer K, Schwenk M, Zieschang T, Essig M, Becker C, Oster P. Physical training improves motor performance in people with dementia: a randomized controlled trial. J Am Geriatr Soc. 2012;60:8–15. https://doi.org/10.1111/j.1532-5415.2011.03778.x.
Article
PubMed
Google Scholar
Kovács E, Sztruhár Jónásné I, Karóczi CK, Korpos A, Gondos T. Effects of a multimodal exercise program on balance, functional mobility and fall risk in older adults with cognitive impairment: a randomized controlled single-blind study. Eur J Phys Rehabil Med. 2013;49:639–48.
PubMed
Google Scholar
Santana-Sosa E, Barriopedro MI, López-Mojares LM, Pérez M, Lucia A. Exercise training is beneficial for Alzheimer’s patients. Int J Sports Med. 2008;29:845–50. https://doi.org/10.1055/s-2008-1038432.
Article
CAS
PubMed
Google Scholar
Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39:142–8. https://doi.org/10.1111/j.1532-5415.1991.tb01616.x.
Article
CAS
PubMed
Google Scholar
Cancela JM, Ayán C, Varela S, Seijo M. Effects of a long-term aerobic exercise intervention on institutionalized patients with dementia. J Sci Med Sport. 2016;19:293–8. https://doi.org/10.1016/j.jsams.2015.05.007.
Article
PubMed
Google Scholar
Kampragkou C, Iakovidis P, Kampragkou E, Kellis E. Effects of a 12-week aerobic exercise program combined with music therapy and memory exercises on cognitive and functional ability in people with middle type of Alzheimer’s disease. Int J Physiother. 2017. https://doi.org/10.15621/ijphy/2017/v4i5/159420.
Sobol NA, Hoffmann K, Frederiksen KS, Vogel A, Vestergaard K, Brændgaard H, et al. Effect of aerobic exercise on physical performance in patients with Alzheimer’s disease. Alzheimers Dement. 2016;12:1207–15. https://doi.org/10.1016/j.jalz.2016.05.004.
Article
PubMed
Google Scholar
Toulotte C, Fabre C, Dangremont B, Lensel G, Thévenon A. Effects of physical training on the physical capacity of frail, demented patients with a history of falling: a randomised controlled trial. Age Ageing. 2003;32:67–73. https://doi.org/10.1093/ageing/32.1.67.
Article
PubMed
Google Scholar
Aguiar P, Monteiro L, Feres A, Gomes I, Melo A. Rivastigmine transdermal patch and physical exercises for Alzheimer’s disease: a randomized clinical trial. Curr Alzheimer Res. 2014;11:532–7. https://doi.org/10.2174/1567205011666140618102224.
Article
CAS
PubMed
Google Scholar
Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Phys Ther. 2000;80:896–903. https://doi.org/10.1093/ptj/80.9.896.
Article
CAS
PubMed
Google Scholar
Guralnik JM, Seeman TE, Tinetti ME, Nevitt MC, Berkman LF. Validation and use of performance measures of functioning in a non-disabled older population: MacArthur studies of successful aging. Aging (Milano). 1994;6:410–9. https://doi.org/10.1007/BF03324272.
Article
CAS
Google Scholar
Rolland Y, Pillard F, Klapouszczak A, Reynish E, Thomas D, Andrieu S, et al. Exercise program for nursing home residents with Alzheimer’s disease: a 1-year randomized, controlled trial. J Am Geriatr Soc. 2007;55:158–65. https://doi.org/10.1111/j.1532-5415.2007.01035.x.
Article
PubMed
Google Scholar
de Souto Barreto P, Cesari M, Denormandie P, Armaingaud D, Vellas B, Rolland Y. Exercise or social intervention for nursing home residents with dementia: a pilot randomized, controlled trial. J Am Geriatr Soc. 2017;65:E123–9. https://doi.org/10.1111/jgs.14947.
Article
PubMed
Google Scholar
Toots A, Littbrand H, Holmberg H, Nordström P, Lundin-Olsson L, Gustafson Y, et al. Walking aids moderate exercise effects on gait speed in people with dementia: a randomized controlled trial. J Am Med Dir Assoc. 2017;18:227–33. https://doi.org/10.1016/j.jamda.2016.09.003.
Article
PubMed
Google Scholar
Kressig RW, Beauchet O. Guidelines for clinical applications of spatio-temporal gait analysis in older adults. Aging Clin Exp Res. 2006;18:174–6. https://doi.org/10.1007/BF03327437.
Article
PubMed
Google Scholar
Pedrinolla A, Venturelli M, Fonte C, Munari D, Benetti MV, Rudi D, et al. Exercise training on locomotion in patients with Alzheimer’s disease: a feasibility study. J Alzheimers Dis. 2018;61:1599–609. https://doi.org/10.3233/JAD-170625.
Article
PubMed
Google Scholar
Schwenk M, Dutzi I, Englert S, Micol W, Najafi B, Mohler J, et al. An intensive exercise program improves motor performances in patients with dementia: translational model of geriatric rehabilitation. J Alzheimers Dis. 2014;39:487–98. https://doi.org/10.3233/JAD-130470.
Article
PubMed
Google Scholar
Schwenk M, Zieschang T, Englert S, Grewal G, Najafi B, Hauer K. Improvements in gait characteristics after intensive resistance and functional training in people with dementia: a randomised controlled trial. BMC Geriatr. 2014;14:73. https://doi.org/10.1186/1471-2318-14-73.
Article
PubMed
PubMed Central
Google Scholar
Kemoun G, Thibaud M, Roumagne N, Carette P, Albinet C, Toussaint L, et al. Effects of a physical training programme on cognitive function and walking efficiency in elderly persons with dementia. Dement Geriatr Cogn Disord. 2010;29:109–14. https://doi.org/10.1159/000272435.
Article
PubMed
Google Scholar
Csuka M, McCarty DJ. Simple method for measurement of lower extremity muscle strength. Am J Med. 1985;78:77–81. https://doi.org/10.1016/0002-9343(85)90465-6.
Article
CAS
PubMed
Google Scholar
Steinberg M, Leoutsakos J-MS, Podewils LJ, Lyketsos CG. Evaluation of a home-based exercise program in the treatment of Alzheimer’s disease: the maximizing Independence in dementia (MIND) study. Int J Geriatr Psychiatry. 2009;24:680–5. https://doi.org/10.1002/gps.2175.
Article
PubMed
PubMed Central
Google Scholar
Werner C, Wiloth S, Lemke NC, Kronbach F, Hauer K. Development and validation of a novel motor-cognitive assessment strategy of compensatory sit-to-stand maneuvers in people with dementia. J Geriatr Phys Ther. 2018;41:143–54. https://doi.org/10.1519/JPT.0000000000000116.
Article
PubMed
Google Scholar
Werner C, Wiloth S, Lemke NC, Kronbach F, Jansen C-P, Oster P, et al. People with dementia can learn compensatory movement maneuvers for the sit-to-stand task: a randomized controlled trial. J Alzheimers Dis. 2017;60:107–20. https://doi.org/10.3233/JAD-170258.
Article
PubMed
Google Scholar
Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–9. https://doi.org/10.1080/02701367.1999.10608028.
Article
CAS
PubMed
Google Scholar
Thomas VS, Hageman PA. A preliminary study on the reliability of physical performance measures in older day-care center clients with dementia. Int Psychogeriatr. 2002;14:17–23. https://doi.org/10.1017/S1041610202008244.
Article
PubMed
Google Scholar
Verkerke GJ, Lemmink KAPM, Slagers AJ, Westhoff MH, van Riet GAJ, Rakhorst G. Precision, comfort and mechanical performance of the Quadriso-tester, a quadriceps force measuring device. Med Biol Eng Comput. 2003;41:283–9. https://doi.org/10.1007/BF02348432.
Article
CAS
PubMed
Google Scholar
Enright PL. The six-minute walk test. Respir Care. 2003;48:783–5.
PubMed
Google Scholar
Roach KE, Tappen RM, Kirk-Sanchez N, Williams CL, Loewenstein D. A randomized controlled trial of an activity specific exercise program for individuals with Alzheimer disease in long-term care settings. J Geriatr Phys Ther. 2011;34:50–6. https://doi.org/10.1519/JPT.0b013e31820aab9c.
Article
PubMed
PubMed Central
Google Scholar
Tappen RM, Roach KE, Applegate EB, Stowell P. Effect of a combined walking and conversation intervention on functional mobility of nursing home residents with Alzheimer disease. Alzheimer Dis Assoc Disord. 2000;14:196–201. https://doi.org/10.1097/00002093-200010000-00002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venturelli M, Scarsini R, Schena F. Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. Am J Alzheimers Dis Other Demen. 2011;26:381–8. https://doi.org/10.1177/1533317511418956.
Article
PubMed
Google Scholar
Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94. https://doi.org/10.1093/geronj/49.2.M85.
Article
CAS
PubMed
Google Scholar
Pitkälä KH, Pöysti MM, Laakkonen M-L, Tilvis RS, Savikko N, Kautiainen H, et al. Effects of the Finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial. JAMA Intern Med. 2013;173:894–901. https://doi.org/10.1001/jamainternmed.2013.359.
Article
PubMed
Google Scholar
Graessel E, Viegas R, Stemmer R, Küchly B, Kornhuber J, Donath C. The Erlangen test of activities of daily living: first results on reliability and validity of a short performance test to measure fundamental activities of daily living in dementia patients. Int Psychogeriatr. 2009;21:103–12. https://doi.org/10.1017/S1041610208007710.
Article
PubMed
Google Scholar
Luttenberger K, Schmiedeberg A, Gräßel E. Activities of daily living in dementia: revalidation of the E-ADL test and suggestions for further development. BMC Psychiatry. 2012;12:208. https://doi.org/10.1186/1471-244X-12-208.
Article
PubMed
PubMed Central
Google Scholar
Bossers WJR, van der Woude LHV, Boersma F, Hortobágyi T, Scherder EJA, van Heuvelen MJG. Comparison of effect of two exercise programs on activities of daily living in individuals with dementia: a 9-week randomized, controlled trial. J Am Geriatr Soc. 2016;64:1258–66. https://doi.org/10.1111/jgs.14160.
Article
PubMed
Google Scholar
Henskens M, Nauta IM, Drost KT, Scherder EJ. The effects of movement stimulation on activities of daily living performance and quality of life in nursing home residents with dementia: a randomized controlled trial. Clin Interv Aging. 2018;13:805–17. https://doi.org/10.2147/CIA.S160031.
Article
PubMed
PubMed Central
Google Scholar
Suzuki M, Yamada S, Inamura A, Omori Y, Kirimoto H, Sugimura S, et al. Reliability and validity of measurements of knee extension strength obtained from nursing home residents with dementia. Am J Phys Med Rehabil. 2009;88:924–33. https://doi.org/10.1097/PHM.0b013e3181ae1003.
Article
PubMed
Google Scholar
Bronas UG, Salisbury D, Kelly K, Leon A, Chow L, Yu F. Determination of aerobic capacity via cycle ergometer exercise testing in Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2017;32:500–8. https://doi.org/10.1177/1533317517720065.
Article
PubMed
PubMed Central
Google Scholar
Suzuki M, Kirimoto H, Inamura A, Yagi M, Omori Y, Yamada S. The relationship between knee extension strength and lower extremity functions in nursing home residents with dementia. Disabil Rehabil. 2012;34:202–9. https://doi.org/10.3109/09638288.2011.593678.
Article
PubMed
Google Scholar
Schwenk M, Hauer K, Zieschang T, Englert S, Mohler J, Najafi B. Sensor-derived physical activity parameters can predict future falls in people with dementia. Gerontology. 2014;60:483–92. https://doi.org/10.1159/000363136.
Article
PubMed
Google Scholar
Tappen RM, Roach KE, Buchner D, Barry C, Edelstein J. Reliability of physical performance measures in nursing home residents with Alzheimer’s disease. J Gerontol Ser A-Biol Sci Med Sci. 1997;52A:M52–5. https://doi.org/10.1093/gerona/52A.1.M52.
Article
Google Scholar
van Iersel MB, Munneke M, Esselink RAJ, Benraad CEM, Olde Rikkert MGM. Gait velocity and the timed-up-and-go test were sensitive to changes in mobility in frail elderly patients. J Clin Epidemiol. 2008;61:186–91. https://doi.org/10.1016/j.jclinepi.2007.04.016.
Article
PubMed
Google Scholar
Alencar MA, Dias JMD, Figueiredo LC, Dias RC. Handgrip strength in elderly with dementia: study of reliability. Rev Bras Fisioter. 2012;16:510–4. https://doi.org/10.1590/S1413-35552012005000059.
Article
PubMed
Google Scholar
Wittwer JE, Webster KE, Andrews PT, Menz HB. Test-retest reliability of spatial and temporal gait parameters of people with Alzheimer’s disease. Gait Posture. 2008;28:392–6. https://doi.org/10.1016/j.gaitpost.2008.01.007.
Article
PubMed
Google Scholar
Orange JB, Molloy DW, Lever JA, Darzins P, Ganesan CR. Alzheimer’s disease. Physician-patient communication. Can Fam Physician. 1994;40:1160–8.
CAS
PubMed
PubMed Central
Google Scholar
Koo TK, Li MY. A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–63. https://doi.org/10.1016/j.jcm.2016.02.012.
Article
PubMed
PubMed Central
Google Scholar